A Multi-task Framework for Infrared Small Target Detection and
Segmentation
- URL: http://arxiv.org/abs/2206.06923v1
- Date: Tue, 14 Jun 2022 15:43:34 GMT
- Title: A Multi-task Framework for Infrared Small Target Detection and
Segmentation
- Authors: Yuhang Chen, Liyuan Li, Xin Liu, Xiaofeng Su, and Fansheng Chen
- Abstract summary: We propose a novel end-to-end framework for infrared small target detection and segmentation.
We use UNet as the backbone to maintain resolution and semantic information.
We develop a multi-task framework for infrared small target detection and segmentation.
- Score: 9.033048310220346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the complicated background and noise of infrared images, infrared
small target detection is one of the most difficult problems in the field of
computer vision. In most existing studies, semantic segmentation methods are
typically used to achieve better results. The centroid of each target is
calculated from the segmentation map as the detection result. In contrast, we
propose a novel end-to-end framework for infrared small target detection and
segmentation in this paper. First, with the use of UNet as the backbone to
maintain resolution and semantic information, our model can achieve a higher
detection accuracy than other state-of-the-art methods by attaching a simple
anchor-free head. Then, a pyramid pool module is used to further extract
features and improve the precision of target segmentation. Next, we use
semantic segmentation tasks that pay more attention to pixel-level features to
assist in the training process of object detection, which increases the average
precision and allows the model to detect some targets that were previously not
detectable. Furthermore, we develop a multi-task framework for infrared small
target detection and segmentation. Our multi-task learning model reduces
complexity by nearly half and speeds up inference by nearly twice compared to
the composite single-task model, while maintaining accuracy. The code and
models are publicly available at https://github.com/Chenastron/MTUNet.
Related papers
- Infrared Small Target Detection based on Adjustable Sensitivity Strategy and Multi-Scale Fusion [2.661766509317245]
We propose a refined infrared small target detection scheme based on an adjustable sensitivity (AS) strategy and multi-scale fusion.
Specifically, a multi-scale model fusion framework based on multi-scale direction-aware network (MSDA-Net) is constructed.
This scheme won the first prize in the PRCV 2024 wide-area infrared small target detection competition.
arXiv Detail & Related papers (2024-07-29T15:22:02Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
We propose a simple yet effective two-stage feature learning paradigm to jointly learn single-shot and multi-shot features for different targets.
Our method has achieved significant improvements on MOT17 and MOT20 datasets while reaching state-of-the-art performance on DanceTrack dataset.
arXiv Detail & Related papers (2023-11-17T08:17:49Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Multi-patch Feature Pyramid Network for Weakly Supervised Object
Detection in Optical Remote Sensing Images [39.25541709228373]
We propose a new architecture for object detection with a multiple patch feature pyramid network (MPFP-Net)
MPFP-Net is different from the current models that during training only pursue the most discriminative patches.
We introduce an effective method to regularize the residual values and make the fusion transition layers strictly norm-preserving.
arXiv Detail & Related papers (2021-08-18T09:25:39Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
Multi-object tracking (MOT) is an important problem in computer vision.
We present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet.
The approach achieves high accuracy for both detection and tracking.
arXiv Detail & Related papers (2020-04-04T08:18:00Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z) - TBC-Net: A real-time detector for infrared small target detection using
semantic constraint [18.24737906712967]
Deep learning is rarely used in infrared small target detection due to the difficulty in learning small target features.
We propose a novel lightweight convolutional neural network TBC-Net for infrared small target detection.
arXiv Detail & Related papers (2019-12-27T05:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.