Investigating Multi-Feature Selection and Ensembling for Audio
Classification
- URL: http://arxiv.org/abs/2206.07511v1
- Date: Wed, 15 Jun 2022 13:11:08 GMT
- Title: Investigating Multi-Feature Selection and Ensembling for Audio
Classification
- Authors: Muhammad Turab and Teerath Kumar and Malika Bendechache and Takfarinas
Saber
- Abstract summary: Deep Learning algorithms have shown impressive performance in diverse domains.
Audio has attracted many researchers over the last couple of decades due to some interesting patterns.
For better performance of audio classification, feature selection and combination play a key role.
- Score: 0.8602553195689513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning (DL) algorithms have shown impressive performance in diverse
domains. Among them, audio has attracted many researchers over the last couple
of decades due to some interesting patterns--particularly in classification of
audio data. For better performance of audio classification, feature selection
and combination play a key role as they have the potential to make or break the
performance of any DL model. To investigate this role, we conduct an extensive
evaluation of the performance of several cutting-edge DL models (i.e.,
Convolutional Neural Network, EfficientNet, MobileNet, Supper Vector Machine
and Multi-Perceptron) with various state-of-the-art audio features (i.e., Mel
Spectrogram, Mel Frequency Cepstral Coefficients, and Zero Crossing Rate)
either independently or as a combination (i.e., through ensembling) on three
different datasets (i.e., Free Spoken Digits Dataset, Audio Urdu Digits
Dataset, and Audio Gujarati Digits Dataset). Overall, results suggest feature
selection depends on both the dataset and the model. However, feature
combinations should be restricted to the only features that already achieve
good performances when used individually (i.e., mostly Mel Spectrogram, Mel
Frequency Cepstral Coefficients). Such feature combination/ensembling enabled
us to outperform the previous state-of-the-art results irrespective of our
choice of DL model.
Related papers
- Beyond Single-Audio: Advancing Multi-Audio Processing in Audio Large Language Models [56.776580717999806]
Real-world applications often involve processing multiple audio streams simultaneously.
We propose the first multi-audio evaluation benchmark that consists of 20 datasets from 11 multi-audio tasks.
We propose a novel multi-audio-LLM (MALLM) to capture audio context among multiple similar audios.
arXiv Detail & Related papers (2024-09-27T12:06:53Z) - Audio Mamba: Selective State Spaces for Self-Supervised Audio Representations [16.269123889392343]
This work proposes Audio Mamba, a selective state space model for learning general-purpose audio representations.
Empirical results on ten diverse audio recognition downstream tasks show that the proposed models consistently outperform comparable self-supervised audio spectrogram transformer baselines.
arXiv Detail & Related papers (2024-06-04T10:19:14Z) - Music Genre Classification: A Comparative Analysis of CNN and XGBoost
Approaches with Mel-frequency cepstral coefficients and Mel Spectrograms [0.0]
This study investigates the performances of three models: a proposed convolutional neural network (CNN), the VGG16 with fully connected layers (FC), and an eXtreme Gradient Boosting (XGBoost) approach on different features.
The results show that the MFCC XGBoost model outperformed the others. Furthermore, applying data segmentation in the data preprocessing phase can significantly enhance the performance of the CNNs.
arXiv Detail & Related papers (2024-01-09T01:50:31Z) - Multimodal Variational Auto-encoder based Audio-Visual Segmentation [46.67599800471001]
ECMVAE factorizes the representations of each modality with a modality-shared representation and a modality-specific representation.
Our approach leads to a new state-of-the-art for audio-visual segmentation, with a 3.84 mIOU performance leap.
arXiv Detail & Related papers (2023-10-12T13:09:40Z) - Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning [50.28566759231076]
We propose an innovative, automatic approach to establish an audio dataset with high-quality captions.
Specifically, we construct a large-scale, high-quality, audio-language dataset, named as Auto-ACD, comprising over 1.5M audio-text pairs.
We employ LLM to paraphrase a congruent caption for each audio, guided by the extracted multi-modality clues.
arXiv Detail & Related papers (2023-09-20T17:59:32Z) - Text-to-feature diffusion for audio-visual few-shot learning [59.45164042078649]
Few-shot learning from video data is a challenging and underexplored, yet much cheaper, setup.
We introduce a unified audio-visual few-shot video classification benchmark on three datasets.
We show that AV-DIFF obtains state-of-the-art performance on our proposed benchmark for audio-visual few-shot learning.
arXiv Detail & Related papers (2023-09-07T17:30:36Z) - AudioFormer: Audio Transformer learns audio feature representations from
discrete acoustic codes [6.375996974877916]
We propose a method named AudioFormer, which learns audio feature representations through the acquisition of discrete acoustic codes.
Our research outcomes demonstrate that AudioFormer attains significantly improved performance compared to prevailing monomodal audio classification models.
arXiv Detail & Related papers (2023-08-14T15:47:25Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
Visually-guided sound source separation consists of three parts: visual feature extraction, multimodal feature fusion, and sound signal processing.
This paper presents audio-visual predictive coding (AVPC) to tackle this task in parameter harmonizing and more effective manner.
In addition, we develop a valid self-supervised learning strategy for AVPC via co-predicting two audio-visual representations of the same sound source.
arXiv Detail & Related papers (2023-06-19T03:10:57Z) - Anomalous Sound Detection using Audio Representation with Machine ID
based Contrastive Learning Pretraining [52.191658157204856]
This paper uses contrastive learning to refine audio representations for each machine ID, rather than for each audio sample.
The proposed two-stage method uses contrastive learning to pretrain the audio representation model.
Experiments show that our method outperforms the state-of-the-art methods using contrastive learning or self-supervised classification.
arXiv Detail & Related papers (2023-04-07T11:08:31Z) - Score-informed Networks for Music Performance Assessment [64.12728872707446]
Deep neural network-based methods incorporating score information into MPA models have not yet been investigated.
We introduce three different models capable of score-informed performance assessment.
arXiv Detail & Related papers (2020-08-01T07:46:24Z) - COALA: Co-Aligned Autoencoders for Learning Semantically Enriched Audio
Representations [32.456824945999465]
We propose a method for learning audio representations, aligning the learned latent representations of audio and associated tags.
We evaluate the quality of our embedding model, measuring its performance as a feature extractor on three different tasks.
arXiv Detail & Related papers (2020-06-15T13:17:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.