Classification of ECG based on Hybrid Features using CNNs for Wearable
Applications
- URL: http://arxiv.org/abs/2206.07648v1
- Date: Tue, 14 Jun 2022 12:14:40 GMT
- Title: Classification of ECG based on Hybrid Features using CNNs for Wearable
Applications
- Authors: Li Xiaolin, Fang Xiang, Rajesh C. Panicker, Barry Cardiff, Deepu John
- Abstract summary: We demonstrate improved performance for ECG classification using hybrid features and three different models.
An RR interval features based model proposed in this work achieved an accuracy of 98.98%, which is an improvement over the baseline model.
Another model combining the frequency features and the RR interval features was developed, which achieved a high accuracy of 99% with good sustained performance in noisy environments.
- Score: 2.0999222360659604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sudden cardiac death and arrhythmia account for a large percentage of all
deaths worldwide. Electrocardiography (ECG) is the most widely used screening
tool for cardiovascular diseases. Traditionally, ECG signals are classified
manually, requiring experience and great skill, while being time-consuming and
prone to error. Thus machine learning algorithms have been widely adopted
because of their ability to perform complex data analysis. Features derived
from the points of interest in ECG - mainly Q, R, and S, are widely used for
arrhythmia detection. In this work, we demonstrate improved performance for ECG
classification using hybrid features and three different models, building on a
1-D convolutional neural network (CNN) model that we had proposed in the past.
An RR interval features based model proposed in this work achieved an accuracy
of 98.98%, which is an improvement over the baseline model. To make the model
immune to noise, we updated the model using frequency features and achieved
good sustained performance in presence of noise with a slightly lower accuracy
of 98.69%. Further, another model combining the frequency features and the RR
interval features was developed, which achieved a high accuracy of 99% with
good sustained performance in noisy environments. Due to its high accuracy and
noise immunity, the proposed model which combines multiple hybrid features, is
well suited for ambulatory wearable sensing applications.
Related papers
- EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
We have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification.
The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features.
Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
arXiv Detail & Related papers (2023-03-06T13:26:29Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Supraventricular Tachycardia Detection and Classification Model of ECG
signal Using Machine Learning [0.0]
Investigation on the electrocardiogram (ECG) signals is an essential way to diagnose heart disease.
This work presents a supraventricular arrhythmia prediction model consisting of a few stages, including filtering of noise.
We have developed a classification model based on machine learning that can successfully categorize different types of supraventricular tachycardia.
arXiv Detail & Related papers (2021-12-24T05:48:26Z) - Synthetic ECG Signal Generation Using Generative Neural Networks [7.122393663641668]
We studied the synthetic ECG generation capability of 5 different models from the generative adversarial network (GAN) family.
The results show that all the tested models can to an extent successfully mass-generate acceptable heartbeats with high similarity in morphological features.
arXiv Detail & Related papers (2021-12-05T20:28:55Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Multistage Pruning of CNN Based ECG Classifiers for Edge Devices [9.223908421919733]
Convolutional neural network (CNN) based deep learning has been used successfully to detect anomalous beats in ECG.
The computational complexity of existing CNN models prohibits them from being implemented in low-powered edge devices.
This paper presents a novel multistage pruning technique that reduces CNN model complexity with negligible loss in performance.
arXiv Detail & Related papers (2021-08-31T17:51:15Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.