Gaussian Blue Noise
- URL: http://arxiv.org/abs/2206.07798v1
- Date: Wed, 15 Jun 2022 20:22:16 GMT
- Title: Gaussian Blue Noise
- Authors: Abdalla G. M. Ahmed, Jing Ren, Peter Wonka
- Abstract summary: We show that a framework for producing point distributions with blue noise spectrum attains unprecedented quality.
Our algorithm scales smoothly and feasibly to high dimensions while maintaining the same quality.
- Score: 49.45731879857138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Among the various approaches for producing point distributions with blue
noise spectrum, we argue for an optimization framework using Gaussian kernels.
We show that with a wise selection of optimization parameters, this approach
attains unprecedented quality, provably surpassing the current state of the art
attained by the optimal transport (BNOT) approach. Further, we show that our
algorithm scales smoothly and feasibly to high dimensions while maintaining the
same quality, realizing unprecedented high-quality high-dimensional blue noise
sets. Finally, we show an extension to adaptive sampling.
Related papers
- Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization [0.0]
We propose a novel algorithm that extends the methods of ball smoothing and Gaussian smoothing for noisy derivative-free optimization.
The algorithm dynamically adapts the shape of the smoothing kernel to approximate the Hessian of the objective function around a local optimum.
arXiv Detail & Related papers (2024-05-02T21:04:20Z) - Accelerated Parameter-Free Stochastic Optimization [28.705054104155973]
We propose a method that achieves near-optimal rates for smooth convex optimization.
It requires essentially no prior knowledge of problem parameters.
Our experiments show consistent, strong performance on convex problems and mixed results on neural network training.
arXiv Detail & Related papers (2024-03-31T12:21:57Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models.
New algorithms retain the ease of implementation of the classical GP-UCB, but an additional exploration step facilitates their convergence.
arXiv Detail & Related papers (2024-01-30T14:16:06Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
We explore the use of exact per-sample Hessian-vector products and gradients to construct self-tuning quadratics.
We prove that our model-based procedure converges in noisy gradient setting.
This is an interesting step for constructing self-tuning quadratics.
arXiv Detail & Related papers (2020-11-09T22:07:30Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.