Time Interval-enhanced Graph Neural Network for Shared-account
Cross-domain Sequential Recommendation
- URL: http://arxiv.org/abs/2206.08050v1
- Date: Thu, 16 Jun 2022 10:06:01 GMT
- Title: Time Interval-enhanced Graph Neural Network for Shared-account
Cross-domain Sequential Recommendation
- Authors: Lei Guo, Jinyu Zhang, Li Tang, Tong Chen, Lei Zhu and Hongzhi Yin
- Abstract summary: Shared-account Cross-domain Sequential Recommendation (SCSR) task aims to recommend the next item via leveraging the mixed user behaviors in multiple domains.
Existing works on SCSR mainly rely on mining sequential patterns via Recurrent Neural Network (RNN)-based models.
We propose a new graph-based solution, namely TiDA-GCN, to address the above challenges.
- Score: 44.34610028544989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shared-account Cross-domain Sequential Recommendation (SCSR) task aims to
recommend the next item via leveraging the mixed user behaviors in multiple
domains. It is gaining immense research attention as more and more users tend
to sign up on different platforms and share accounts with others to access
domain-specific services. Existing works on SCSR mainly rely on mining
sequential patterns via Recurrent Neural Network (RNN)-based models, which
suffer from the following limitations: 1) RNN-based methods overwhelmingly
target discovering sequential dependencies in single-user behaviors. They are
not expressive enough to capture the relationships among multiple entities in
SCSR. 2) All existing methods bridge two domains via knowledge transfer in the
latent space, and ignore the explicit cross-domain graph structure. 3) None
existing studies consider the time interval information among items, which is
essential in the sequential recommendation for characterizing different items
and learning discriminative representations for them. In this work, we propose
a new graph-based solution, namely TiDA-GCN, to address the above challenges.
Specifically, we first link users and items in each domain as a graph. Then, we
devise a domain-aware graph convolution network to learn userspecific node
representations. To fully account for users' domainspecific preferences on
items, two effective attention mechanisms are further developed to selectively
guide the message passing process. Moreover, to further enhance item- and
account-level representation learning, we incorporate the time interval into
the message passing, and design an account-aware self-attention module for
learning items' interactive characteristics. Experiments demonstrate the
superiority of our proposed method from various aspects.
Related papers
- Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
We propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information.
Experimental results on two real-world datasets demonstrate the superiority of our proposed model.
arXiv Detail & Related papers (2023-11-14T16:07:16Z) - Exploiting Graph Structured Cross-Domain Representation for Multi-Domain
Recommendation [71.45854187886088]
Multi-domain recommender systems benefit from cross-domain representation learning and positive knowledge transfer.
We use temporal intra- and inter-domain interactions as contextual information for our method called MAGRec.
We perform experiments on publicly available datasets in different scenarios where MAGRec consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-12T19:51:32Z) - DDGHM: Dual Dynamic Graph with Hybrid Metric Training for Cross-Domain
Sequential Recommendation [15.366783212837515]
Sequential Recommendation (SR) characterizes evolving patterns of user behaviors by modeling how users transit among items.
To solve this problem, we focus on Cross-Domain Sequential Recommendation (CDSR)
We propose DDGHM, a novel framework for the CDSR problem, which includes two main modules, dual dynamic graph modeling and hybrid metric training.
arXiv Detail & Related papers (2022-09-21T07:53:06Z) - Reinforcement Learning-enhanced Shared-account Cross-domain Sequential
Recommendation [38.70844108264403]
Shared-account Cross-domain Sequential Recommendation (SCSR) is an emerging yet challenging task.
We propose a reinforcement learning-based solution, namely RL-ISN, which consists of a basic cross-domain recommender and a reinforcement learning-based domain filter.
To evaluate the performance of our solution, we conduct extensive experiments on two real-world datasets.
arXiv Detail & Related papers (2022-06-16T11:06:32Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z) - Position-enhanced and Time-aware Graph Convolutional Network for
Sequential Recommendations [3.286961611175469]
We propose a new deep learning-based sequential recommendation approach based on a Position-enhanced and Time-aware Graph Convolutional Network (PTGCN)
PTGCN models the sequential patterns and temporal dynamics between user-item interactions by defining a position-enhanced and time-aware graph convolution operation.
It realizes the high-order connectivity between users and items by stacking multi-layer graph convolutions.
arXiv Detail & Related papers (2021-07-12T07:34:20Z) - Dual Attentive Sequential Learning for Cross-Domain Click-Through Rate
Prediction [76.98616102965023]
Cross domain recommender system constitutes a powerful method to tackle the cold-start and sparsity problem.
We propose a novel approach to cross-domain sequential recommendations based on the dual learning mechanism.
arXiv Detail & Related papers (2021-06-05T01:21:21Z) - Dual Metric Learning for Effective and Efficient Cross-Domain
Recommendations [85.6250759280292]
Cross domain recommender systems have been increasingly valuable for helping consumers identify useful items in different applications.
Existing cross-domain models typically require large number of overlap users, which can be difficult to obtain in some applications.
We propose a novel cross-domain recommendation model based on dual learning that transfers information between two related domains in an iterative manner.
arXiv Detail & Related papers (2021-04-17T09:18:59Z) - Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain
Recommendation [19.106717948585445]
We develop scalable neural layer-transfer approaches for cross-domain learning.
Our key intuition is to guide neural collaborative filtering with domain-invariant components shared across the dense and sparse domains.
We show the effectiveness and scalability of our approach on two public datasets and a massive transaction dataset from Visa.
arXiv Detail & Related papers (2020-05-21T05:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.