Adapting Self-Supervised Vision Transformers by Probing
Attention-Conditioned Masking Consistency
- URL: http://arxiv.org/abs/2206.08222v1
- Date: Thu, 16 Jun 2022 14:46:10 GMT
- Title: Adapting Self-Supervised Vision Transformers by Probing
Attention-Conditioned Masking Consistency
- Authors: Viraj Prabhu, Sriram Yenamandra, Aaditya Singh, Judy Hoffman
- Abstract summary: We propose PACMAC, a simple two-stage adaptation algorithm for self-supervised ViTs.
Our simple approach leads to consistent performance gains over competing methods.
- Score: 7.940705941237998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual domain adaptation (DA) seeks to transfer trained models to unseen,
unlabeled domains across distribution shift, but approaches typically focus on
adapting convolutional neural network architectures initialized with supervised
ImageNet representations. In this work, we shift focus to adapting modern
architectures for object recognition -- the increasingly popular Vision
Transformer (ViT) -- and modern pretraining based on self-supervised learning
(SSL). Inspired by the design of recent SSL approaches based on learning from
partial image inputs generated via masking or cropping -- either by learning to
predict the missing pixels, or learning representational invariances to such
augmentations -- we propose PACMAC, a simple two-stage adaptation algorithm for
self-supervised ViTs. PACMAC first performs in-domain SSL on pooled source and
target data to learn task-discriminative features, and then probes the model's
predictive consistency across a set of partial target inputs generated via a
novel attention-conditioned masking strategy, to identify reliable candidates
for self-training. Our simple approach leads to consistent performance gains
over competing methods that use ViTs and self-supervised initializations on
standard object recognition benchmarks. Code available at
https://github.com/virajprabhu/PACMAC
Related papers
- Locality Alignment Improves Vision-Language Models [55.275235524659905]
Vision language models (VLMs) have seen growing adoption in recent years, but many still struggle with basic spatial reasoning errors.
We propose a new efficient post-training stage for ViTs called locality alignment.
We show that locality-aligned backbones improve performance across a range of benchmarks.
arXiv Detail & Related papers (2024-10-14T21:01:01Z) - Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
Humans possess remarkable ability to accurately classify new, unseen images after being exposed to only a few examples.
For artificial neural network models, determining the most relevant features for distinguishing between two images with limited samples presents a challenge.
We propose an intra-task mutual attention method for few-shot learning, that involves splitting the support and query samples into patches.
arXiv Detail & Related papers (2024-05-06T02:02:57Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Masked Momentum Contrastive Learning for Zero-shot Semantic
Understanding [39.424931953675994]
Self-supervised pretraining (SSP) has emerged as a popular technique in machine learning, enabling the extraction of meaningful feature representations without labelled data.
This study endeavours to evaluate the effectiveness of pure self-supervised learning (SSL) techniques in computer vision tasks.
arXiv Detail & Related papers (2023-08-22T13:55:57Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
Self-supervised learning can be used for mitigating the greedy needs of Vision Transformer networks.
We propose a single-stage and standalone method, MOCA, which unifies both desired properties.
We achieve new state-of-the-art results on low-shot settings and strong experimental results in various evaluation protocols.
arXiv Detail & Related papers (2023-07-18T15:46:20Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
Self-supervised learning has emerged as a promising approach for remote sensing image classification.
We present a study of different self-supervised pre-training strategies and evaluate their effect across 14 downstream datasets.
arXiv Detail & Related papers (2023-07-04T10:57:52Z) - Learning to Mask and Permute Visual Tokens for Vision Transformer
Pre-Training [59.923672191632065]
We propose a new self-supervised pre-training approach, named Masked and Permuted Vision Transformer (MaPeT)
MaPeT employs autoregressive and permuted predictions to capture intra-patch dependencies.
Our results demonstrate that MaPeT achieves competitive performance on ImageNet.
arXiv Detail & Related papers (2023-06-12T18:12:19Z) - P{\O}DA: Prompt-driven Zero-shot Domain Adaptation [27.524962843495366]
We adapt a model trained on a source domain using only a general description in natural language of the target domain, i.e., a prompt.
We show that these prompt-driven augmentations can be used to perform zero-shot domain adaptation for semantic segmentation.
arXiv Detail & Related papers (2022-12-06T18:59:58Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - Benchmarking Detection Transfer Learning with Vision Transformers [60.97703494764904]
complexity of object detection methods can make benchmarking non-trivial when new architectures, such as Vision Transformer (ViT) models, arrive.
We present training techniques that overcome these challenges, enabling the use of standard ViT models as the backbone of Mask R-CNN.
Our results show that recent masking-based unsupervised learning methods may, for the first time, provide convincing transfer learning improvements on COCO.
arXiv Detail & Related papers (2021-11-22T18:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.