A Look at Value-Based Decision-Time vs. Background Planning Methods Across Different Settings
- URL: http://arxiv.org/abs/2206.08442v3
- Date: Mon, 12 Aug 2024 11:17:34 GMT
- Title: A Look at Value-Based Decision-Time vs. Background Planning Methods Across Different Settings
- Authors: Safa Alver, Doina Precup,
- Abstract summary: We study how the value-based versions of decision-time and background planning methods will compare against each other across different settings.
Overall, our findings suggest that even though value-based versions of the two planning methods perform on par in their simplest instantiations, the modern instantiations of value-based decision-time planning methods can perform on par or better than the modern instantiations of value-based background planning methods.
- Score: 41.606112019744174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In model-based reinforcement learning (RL), an agent can leverage a learned model to improve its way of behaving in different ways. Two of the prevalent ways to do this are through decision-time and background planning methods. In this study, we are interested in understanding how the value-based versions of these two planning methods will compare against each other across different settings. Towards this goal, we first consider the simplest instantiations of value-based decision-time and background planning methods and provide theoretical results on which one will perform better in the regular RL and transfer learning settings. Then, we consider the modern instantiations of them and provide hypotheses on which one will perform better in the same settings. Finally, we perform illustrative experiments to validate these theoretical results and hypotheses. Overall, our findings suggest that even though value-based versions of the two planning methods perform on par in their simplest instantiations, the modern instantiations of value-based decision-time planning methods can perform on par or better than the modern instantiations of value-based background planning methods in both the regular RL and transfer learning settings.
Related papers
- Meta-Gradient Search Control: A Method for Improving the Efficiency of Dyna-style Planning [8.552540426753]
This paper introduces an online, meta-gradient algorithm that tunes a probability with which states are queried during Dyna-style planning.
Results indicate that our method improves efficiency of the planning process.
arXiv Detail & Related papers (2024-06-27T22:24:46Z) - Theoretically Guaranteed Policy Improvement Distilled from Model-Based
Planning [64.10794426777493]
Model-based reinforcement learning (RL) has demonstrated remarkable successes on a range of continuous control tasks.
Recent practices tend to distill optimized action sequences into an RL policy during the training phase.
We develop an approach to distill from model-based planning to the policy.
arXiv Detail & Related papers (2023-07-24T16:52:31Z) - The Virtues of Laziness in Model-based RL: A Unified Objective and
Algorithms [37.025378882978714]
We propose a novel approach to addressing two fundamental challenges in Model-based Reinforcement Learning (MBRL)
Our "lazy" method leverages a novel unified objective, Performance Difference via Advantage in Model, to capture the performance difference between the learned policy and expert policy.
We present two no-regret algorithms to optimize the proposed objective, and demonstrate their statistical and computational gains.
arXiv Detail & Related papers (2023-03-01T17:42:26Z) - Hierarchical Optimization-Derived Learning [58.69200830655009]
We establish a new framework, named Hierarchical ODL (HODL), to simultaneously investigate the intrinsic behaviors of optimization-derived model construction and its corresponding learning process.
This is the first theoretical guarantee for these two coupled ODL components: optimization and learning.
arXiv Detail & Related papers (2023-02-11T03:35:13Z) - Weighted Ensemble Self-Supervised Learning [67.24482854208783]
Ensembling has proven to be a powerful technique for boosting model performance.
We develop a framework that permits data-dependent weighted cross-entropy losses.
Our method outperforms both in multiple evaluation metrics on ImageNet-1K.
arXiv Detail & Related papers (2022-11-18T02:00:17Z) - Efficient Real-world Testing of Causal Decision Making via Bayesian
Experimental Design for Contextual Optimisation [12.37745209793872]
We introduce a model-agnostic framework for gathering data to evaluate and improve contextual decision making.
Our method is used for the data-efficient evaluation of the regret of past treatment assignments.
arXiv Detail & Related papers (2022-07-12T01:20:11Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z) - Discriminator Augmented Model-Based Reinforcement Learning [47.094522301093775]
It is common in practice for the learned model to be inaccurate, impairing planning and leading to poor performance.
This paper aims to improve planning with an importance sampling framework that accounts for discrepancy between the true and learned dynamics.
arXiv Detail & Related papers (2021-03-24T06:01:55Z) - Provable Representation Learning for Imitation Learning via Bi-level
Optimization [60.059520774789654]
A common strategy in modern learning systems is to learn a representation that is useful for many tasks.
We study this strategy in the imitation learning setting for Markov decision processes (MDPs) where multiple experts' trajectories are available.
We instantiate this framework for the imitation learning settings of behavior cloning and observation-alone.
arXiv Detail & Related papers (2020-02-24T21:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.