High-Speed Accurate Robot Control using Learned Forward Kinodynamics and
Non-linear Least Squares Optimization
- URL: http://arxiv.org/abs/2206.08487v1
- Date: Thu, 16 Jun 2022 23:52:01 GMT
- Title: High-Speed Accurate Robot Control using Learned Forward Kinodynamics and
Non-linear Least Squares Optimization
- Authors: Pranav Atreya, Haresh Karnan, Kavan Singh Sikand, Xuesu Xiao, Garrett
Warnell, Sadegh Rabiee, Peter Stone, Joydeep Biswas
- Abstract summary: The dependence of the movement of the robot on kinodynamic interactions becomes more pronounced at high speeds.
Previous work has shown that learning the inverse kinodynamic model can be helpful for high-speed robot control.
We present a new formulation for accurate, high-speed robot control that makes use of a learned forward kinodynamic (FKD) model and non-linear least squares optimization.
- Score: 42.92648945058518
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate control of robots in the real world requires a control system that
is capable of taking into account the kinodynamic interactions of the robot
with its environment. At high speeds, the dependence of the movement of the
robot on these kinodynamic interactions becomes more pronounced, making
high-speed, accurate robot control a challenging problem. Previous work has
shown that learning the inverse kinodynamics (IKD) of the robot can be helpful
for high-speed robot control. However a learned inverse kinodynamic model can
only be applied to a limited class of control problems, and different control
problems require the learning of a new IKD model. In this work we present a new
formulation for accurate, high-speed robot control that makes use of a learned
forward kinodynamic (FKD) model and non-linear least squares optimization. By
nature of the formulation, this approach is extensible to a wide array of
control problems without requiring the retraining of a new model. We
demonstrate the ability of this approach to accurately control a scale
one-tenth robot car at high speeds, and show improved results over baselines.
Related papers
- Distributed Robust Learning based Formation Control of Mobile Robots based on Bioinspired Neural Dynamics [14.149584412213269]
We first introduce a distributed estimator using a variable structure and cascaded design technique, eliminating the need for derivative information to improve the real time performance.
Then, a kinematic tracking control method is developed utilizing a bioinspired neural dynamic-based approach aimed at providing smooth control inputs and effectively resolving the speed jump issue.
To address the challenges for robots operating with completely unknown dynamics and disturbances, a learning-based robust dynamic controller is developed.
arXiv Detail & Related papers (2024-03-23T04:36:12Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Prompt a Robot to Walk with Large Language Models [18.214609570837403]
Large language models (LLMs) pre-trained on vast internet-scale data have showcased remarkable capabilities across diverse domains.
We introduce a novel paradigm in which we use few-shot prompts collected from the physical environment.
Experiments across various robots and environments validate that our method can effectively prompt a robot to walk.
arXiv Detail & Related papers (2023-09-18T17:50:17Z) - Human-Robot Skill Transfer with Enhanced Compliance via Dynamic Movement
Primitives [1.7901837062462316]
We introduce a systematic method to extract the dynamic features from human demonstration to auto-tune the parameters in the Dynamic Movement Primitives framework.
Our method was implemented into an actual human-robot setup to extract human dynamic features and used to regenerate the robot trajectories following both LfD and RL.
arXiv Detail & Related papers (2023-04-12T08:48:28Z) - Domain Randomization for Robust, Affordable and Effective Closed-loop
Control of Soft Robots [10.977130974626668]
Soft robots are gaining popularity thanks to their intrinsic safety to contacts and adaptability.
We show how Domain Randomization (DR) can solve this problem by enhancing RL policies for soft robots.
We introduce a novel algorithmic extension to previous adaptive domain randomization methods for the automatic inference of dynamics parameters for deformable objects.
arXiv Detail & Related papers (2023-03-07T18:50:00Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
We present an approach for overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level.
Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion.
arXiv Detail & Related papers (2023-03-07T08:16:46Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.