Zeeman-Hyperfine Measurements of a Pseudo-Degenerate Quadruplet in
CaF$_2$:Ho$^{3+}$
- URL: http://arxiv.org/abs/2206.09047v1
- Date: Fri, 17 Jun 2022 23:12:10 GMT
- Title: Zeeman-Hyperfine Measurements of a Pseudo-Degenerate Quadruplet in
CaF$_2$:Ho$^{3+}$
- Authors: Kieran M. Smith, Michael F. Reid, and Jon-Paul R. Wells
- Abstract summary: We report Zeeman infra-red spectroscopy of electronic-nuclear levels of $5$I$_8.
Simulated spectra based upon a crystal-field analysis give an excellent approximation to the data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report Zeeman infra-red spectroscopy of electronic-nuclear levels of
$^5$I$_8 \rightarrow ^5$I$_7$ transitions of Ho$^{3+}$ in the C$_{\rm
4v}$(F$^-$) centre in CaF$_2$ with the magnetic field along the $\langle
111\rangle$ direction of the crystal. Transitions to the lowest $^5$I$_7$
state, an isolated electronic doublet, and the next group of states, a
pseudo-quadruplet consisting of a doublet and two nearby singlets, exhibit
strongly non-linear Zeeman splittings and intensity variations. Simulated
spectra based upon a crystal-field analysis give an excellent approximation to
the data, illustrating the strong predictive ability of the parametrised
crystal-field approach. Anti-crossings in the hyperfine splittings, the basis
of quantum information storage in rare-earth doped insulating dielectrics, are
also predicted.
Related papers
- Spectroscopy, Crystal-Field, and Transition Intensity Analyses of the C$_{\rm 3v}$(O$^{2-}$) Centre in Er$^{3+}$ Doped CaF$_{2}$ Crystals [0.0]
We present detailed absorption and laser site-selective spectroscopy of the C$_rm 3v$(O$2-$) centre in CaF$$:Er$3+$.
The transition has a low-temperature inhomogeneous line of 1 GHz with hyperfine structure observable from the $167$Er isotope.
arXiv Detail & Related papers (2024-09-23T23:52:40Z) - Towards the "puzzle" of Chromium dimer Cr$_2$: predicting the Born-Oppenheimer rovibrational spectrum [44.99833362998488]
This paper calculates the potential energy curve for the state $X1Sigma+$ of the Cr$$$ dimer.
It is found for the first time for the whole range of internuclear distances $R$.
arXiv Detail & Related papers (2024-01-06T17:00:12Z) - Prediction of the Optical Polarization and High Field Hyperfine
Structure Via a Parametrized Crystal-Field Model for the Low Symmetry Centers
in Er$^{3+}$ Doped Y$_{2}$SiO$_{5}$ [0.0]
It is possible to account for the electronic, magnetic and hyperfine structure of the full 4f$11$ configuration of Er$3+$:Y$_2$SiO$_5$.
It is possible to predict both optical polarization behavior and high magnetic field hyperfine structure of transitions in the 1.5 $mu$m telecommunications band.
arXiv Detail & Related papers (2022-06-18T01:24:20Z) - Reproduction of the electronic and magnetic structure of the low
symmetry sites of Y$_{2}$SiO$_{5}$ doped with Sm$^{3+}$ via a parameterized
crystal-field model [0.0]
Parametrized crystal-field analyses are presented for both the six and seven fold coordinated, C$_1$ symmetry Sm$3+$ centers.
The resultant analyses give good approximation to the experimental energy levels and magnetic splittings, yielding crystal-field parameters consistent with the few other lanthanide ions.
arXiv Detail & Related papers (2022-06-18T01:20:58Z) - Electrical two-qubit gates within a pair of clock-qubit magnetic
molecules [59.45414406974091]
Enhanced coherence in HoW$_10$ molecular spin qubits has been demonstrated by use of Clock Transitions (CTs)
We explore the possibility of employing the electric field to effectangling two-qubit quantum gates among two neighbouring CT-protected HoW$_10$ qubits within a diluted crystal.
arXiv Detail & Related papers (2022-04-20T16:27:24Z) - Complete crystal field calculation of Zeeman-hyperfine splittings in
europium [0.0]
We present a model for the structure of the Zeeman-hyperfine structure of Eu$3+$.
The model could be used to improve crystal field calculations for other non-Kramers singlet states.
arXiv Detail & Related papers (2021-10-08T05:24:31Z) - Electron-Nuclear Interactions as a Test of Crystal-Field Parameters for
Low Symmetry Systems: Zeeman-Hyperfine Spectroscopy of Ho$^{3+}$ Doped
Y$_2$SiO$_5$ [0.0]
Crystal-field parameters determined for the two $C$ symmetry sites in Er$3+$:Y$SiO$_5$ are successfully used to model the Zeeman-hyperfine data.
The two six- and seven-coordinate substitutional sites may be distinguished by comparing the spectra with crystal-field calculations.
arXiv Detail & Related papers (2021-03-16T22:06:21Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.