EATFormer: Improving Vision Transformer Inspired by Evolutionary Algorithm
- URL: http://arxiv.org/abs/2206.09325v3
- Date: Sun, 11 Aug 2024 14:09:09 GMT
- Title: EATFormer: Improving Vision Transformer Inspired by Evolutionary Algorithm
- Authors: Jiangning Zhang, Xiangtai Li, Yabiao Wang, Chengjie Wang, Yibo Yang, Yong Liu, Dacheng Tao,
- Abstract summary: This paper explains the rationality of Vision Transformer by analogy with the proven practical evolutionary algorithm (EA)
We propose a novel pyramid EATFormer backbone that only contains the proposed EA-based transformer (EAT) block.
Massive quantitative and quantitative experiments on image classification, downstream tasks, and explanatory experiments demonstrate the effectiveness and superiority of our approach.
- Score: 111.17100512647619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by biological evolution, this paper explains the rationality of Vision Transformer by analogy with the proven practical evolutionary algorithm (EA) and derives that both have consistent mathematical formulation. Then inspired by effective EA variants, we propose a novel pyramid EATFormer backbone that only contains the proposed EA-based transformer (EAT) block, which consists of three residual parts, i.e., Multi-scale region aggregation, global and local interaction, and feed-forward network modules, to model multi-scale, interactive, and individual information separately. Moreover, we design a task-related head docked with transformer backbone to complete final information fusion more flexibly and improve a modulated deformable MSA to dynamically model irregular locations. Massive quantitative and quantitative experiments on image classification, downstream tasks, and explanatory experiments demonstrate the effectiveness and superiority of our approach over state-of-the-art methods. E.g., our Mobile (1.8 M), Tiny (6.1 M), Small (24.3 M), and Base (49.0 M) models achieve 69.4, 78.4, 83.1, and 83.9 Top-1 only trained on ImageNet-1K with naive training recipe; EATFormer-Tiny/Small/Base armed Mask-R-CNN obtain 45.4/47.4/49.0 box AP and 41.4/42.9/44.2 mask AP on COCO detection, surpassing contemporary MPViT-T, Swin-T, and Swin-S by 0.6/1.4/0.5 box AP and 0.4/1.3/0.9 mask AP separately with less FLOPs; Our EATFormer-Small/Base achieve 47.3/49.3 mIoU on ADE20K by Upernet that exceeds Swin-T/S by 2.8/1.7. Code is available at https://github.com/zhangzjn/EATFormer.
Related papers
- SDPose: Tokenized Pose Estimation via Circulation-Guide Self-Distillation [53.675725490807615]
We introduce SDPose, a new self-distillation method for improving the performance of small transformer-based models.
SDPose-T obtains 69.7% mAP with 4.4M parameters and 1.8 GFLOPs, while SDPose-S-V2 obtains 73.5% mAP on the MSCOCO validation dataset.
arXiv Detail & Related papers (2024-04-04T15:23:14Z) - EgoPoseFormer: A Simple Baseline for Stereo Egocentric 3D Human Pose Estimation [15.590340765703893]
We present EgoPoseFormer, a transformer-based model for stereo egocentric human pose estimation.
Our approach overcomes the main challenge of overcoming joint invisibility caused by self-occlusion or a limited field of view (FOV) of head-mounted cameras.
We evaluate our method on the stereo UnrealEgo dataset and show it significantly outperforms previous approaches.
arXiv Detail & Related papers (2024-03-26T20:02:48Z) - Scale-Aware Modulation Meet Transformer [28.414901658729107]
This paper presents a new vision Transformer, Scale-Aware Modulation Transformer (SMT)
SMT can handle various downstream tasks efficiently by combining the convolutional network and vision Transformer.
arXiv Detail & Related papers (2023-07-17T15:47:48Z) - DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition [62.95223898214866]
We explore effective Vision Transformers to pursue a preferable trade-off between the computational complexity and size of the attended receptive field.
With a pyramid architecture, we construct a Multi-Scale Dilated Transformer (DilateFormer) by stacking MSDA blocks at low-level stages and global multi-head self-attention blocks at high-level stages.
Our experiment results show that our DilateFormer achieves state-of-the-art performance on various vision tasks.
arXiv Detail & Related papers (2023-02-03T14:59:31Z) - Global Context Vision Transformers [78.5346173956383]
We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization for computer vision.
We address the lack of the inductive bias in ViTs, and propose to leverage a modified fused inverted residual blocks in our architecture.
Our proposed GC ViT achieves state-of-the-art results across image classification, object detection and semantic segmentation tasks.
arXiv Detail & Related papers (2022-06-20T18:42:44Z) - UniFormer: Unifying Convolution and Self-attention for Visual
Recognition [69.68907941116127]
Convolution neural networks (CNNs) and vision transformers (ViTs) have been two dominant frameworks in the past few years.
We propose a novel Unified transFormer (UniFormer) which seamlessly integrates the merits of convolution and self-attention in a concise transformer format.
Our UniFormer achieves 86.3 top-1 accuracy on ImageNet-1K classification.
arXiv Detail & Related papers (2022-01-24T04:39:39Z) - Focal Self-attention for Local-Global Interactions in Vision
Transformers [90.9169644436091]
We present focal self-attention, a new mechanism that incorporates both fine-grained local and coarse-grained global interactions.
With focal self-attention, we propose a new variant of Vision Transformer models, called Focal Transformer, which achieves superior performance over the state-of-the-art vision Transformers.
arXiv Detail & Related papers (2021-07-01T17:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.