Dynamic Message Propagation Network for RGB-D Salient Object Detection
- URL: http://arxiv.org/abs/2206.09552v1
- Date: Mon, 20 Jun 2022 03:27:48 GMT
- Title: Dynamic Message Propagation Network for RGB-D Salient Object Detection
- Authors: Baian Chen, Zhilei Chen, Xiaowei Hu, Jun Xu, Haoran Xie, Mingqiang
Wei, Jing Qin
- Abstract summary: This paper presents a novel deep neural network framework for RGB-D salient object detection by controlling the message passing between the RGB images and depth maps on the feature level.
Compared with 17 state-of-the-art methods on six benchmark datasets for RGB-D salient object detection, experimental results show that our method outperforms all the others, both quantitatively and visually.
- Score: 47.00147036733322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel deep neural network framework for RGB-D salient
object detection by controlling the message passing between the RGB images and
depth maps on the feature level and exploring the long-range semantic contexts
and geometric information on both RGB and depth features to infer salient
objects. To achieve this, we formulate a dynamic message propagation (DMP)
module with the graph neural networks and deformable convolutions to
dynamically learn the context information and to automatically predict filter
weights and affinity matrices for message propagation control. We further embed
this module into a Siamese-based network to process the RGB image and depth map
respectively and design a multi-level feature fusion (MFF) module to explore
the cross-level information between the refined RGB and depth features.
Compared with 17 state-of-the-art methods on six benchmark datasets for RGB-D
salient object detection, experimental results show that our method outperforms
all the others, both quantitatively and visually.
Related papers
- RBF Weighted Hyper-Involution for RGB-D Object Detection [0.0]
We propose a real-time and two stream RGBD object detection model.
The proposed model consists of two new components: a depth guided hyper-involution that adapts dynamically based on the spatial interaction pattern in the raw depth map and an up-sampling based trainable fusion layer.
We show that the proposed model outperforms other RGB-D based object detection models on NYU Depth v2 dataset and achieves comparable (second best) results on SUN RGB-D.
arXiv Detail & Related papers (2023-09-30T11:25:34Z) - SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object
Detection [5.2134203335146925]
RGB-D salient object detection (SOD) has been in the spotlight recently because it is an important preprocessing operation for various vision tasks.
Despite advances in deep learning-based methods, RGB-D SOD is still challenging due to the large domain gap between an RGB image and the depth map and low-quality depth maps.
We propose a novel superpixel prototype sampling network architecture to solve this problem.
arXiv Detail & Related papers (2022-07-16T10:43:14Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - Multi-Scale Iterative Refinement Network for RGB-D Salient Object
Detection [7.062058947498447]
salient visual cues appear in various scales and resolutions of RGB images due to semantic gaps at different feature levels.
Similar salient patterns are available in cross-modal depth images as well as multi-scale versions.
We devise attention based fusion module (ABF) to address on cross-modal correlation.
arXiv Detail & Related papers (2022-01-24T10:33:00Z) - RGB-D Saliency Detection via Cascaded Mutual Information Minimization [122.8879596830581]
Existing RGB-D saliency detection models do not explicitly encourage RGB and depth to achieve effective multi-modal learning.
We introduce a novel multi-stage cascaded learning framework via mutual information minimization to "explicitly" model the multi-modal information between RGB image and depth data.
arXiv Detail & Related papers (2021-09-15T12:31:27Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - MobileSal: Extremely Efficient RGB-D Salient Object Detection [62.04876251927581]
This paper introduces a novel network, methodname, which focuses on efficient RGB-D salient object detection (SOD)
We propose an implicit depth restoration (IDR) technique to strengthen the feature representation capability of mobile networks for RGB-D SOD.
With IDR and CPR incorporated, methodnameperforms favorably against sArt methods on seven challenging RGB-D SOD datasets.
arXiv Detail & Related papers (2020-12-24T04:36:42Z) - Cross-Modal Weighting Network for RGB-D Salient Object Detection [76.0965123893641]
We propose a novel Cross-Modal Weighting (CMW) strategy to encourage comprehensive interactions between RGB and depth channels for RGB-D SOD.
Specifically, three RGB-depth interaction modules, named CMW-L, CMW-M and CMW-H, are developed to deal with respectively low-, middle- and high-level cross-modal information fusion.
CMWNet consistently outperforms 15 state-of-the-art RGB-D SOD methods on seven popular benchmarks.
arXiv Detail & Related papers (2020-07-09T16:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.