Learning Neuro-Symbolic Skills for Bilevel Planning
- URL: http://arxiv.org/abs/2206.10680v1
- Date: Tue, 21 Jun 2022 19:01:19 GMT
- Title: Learning Neuro-Symbolic Skills for Bilevel Planning
- Authors: Tom Silver, Ashay Athalye, Joshua B. Tenenbaum, Tomas Lozano-Perez,
Leslie Pack Kaelbling
- Abstract summary: Decision-making is challenging in robotics environments with continuous object-centric states, continuous actions, long horizons, and sparse feedback.
Hierarchical approaches, such as task and motion planning (TAMP), address these challenges by decomposing decision-making into two or more levels of abstraction.
Our main contribution is a method for learning parameterized polices in combination with operators and samplers.
- Score: 63.388694268198655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision-making is challenging in robotics environments with continuous
object-centric states, continuous actions, long horizons, and sparse feedback.
Hierarchical approaches, such as task and motion planning (TAMP), address these
challenges by decomposing decision-making into two or more levels of
abstraction. In a setting where demonstrations and symbolic predicates are
given, prior work has shown how to learn symbolic operators and neural samplers
for TAMP with manually designed parameterized policies. Our main contribution
is a method for learning parameterized polices in combination with operators
and samplers. These components are packaged into modular neuro-symbolic skills
and sequenced together with search-then-sample TAMP to solve new tasks. In
experiments in four robotics domains, we show that our approach -- bilevel
planning with neuro-symbolic skills -- can solve a wide range of tasks with
varying initial states, goals, and objects, outperforming six baselines and
ablations. Video: https://youtu.be/PbFZP8rPuGg Code:
https://tinyurl.com/skill-learning
Related papers
- Large Language Models for Orchestrating Bimanual Robots [19.60907949776435]
We present LAnguage-model-based Bimanual ORchestration (LABOR) to analyze task configurations and devise coordination control policies.
We evaluate our method through simulated experiments involving two classes of long-horizon tasks using the NICOL humanoid robot.
arXiv Detail & Related papers (2024-04-02T15:08:35Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - Learning Efficient Abstract Planning Models that Choose What to Predict [28.013014215441505]
We show that existing symbolic operator learning approaches fall short in many robotics domains.
This is primarily because they attempt to learn operators that exactly predict all observed changes in the abstract state.
We propose to learn operators that 'choose what to predict' by only modelling changes necessary for abstract planning to achieve specified goals.
arXiv Detail & Related papers (2022-08-16T13:12:59Z) - Skill-based Multi-objective Reinforcement Learning of Industrial Robot
Tasks with Planning and Knowledge Integration [0.4949816699298335]
We introduce an approach that provides a combination of task-level planning with targeted learning of scenario-specific parameters for skill-based systems.
We demonstrate the efficacy and versatility of our approach by learning skill parameters for two different contact-rich tasks.
arXiv Detail & Related papers (2022-03-18T16:03:27Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks.
In this work, we assume each task is associated with a subset of latent discrete skills from a (potentially small) inventory.
We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning.
arXiv Detail & Related papers (2022-02-28T16:07:19Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Learning Neuro-Symbolic Relational Transition Models for Bilevel
Planning [61.37385221479233]
In this work, we take a step toward bridging the gap between model-based reinforcement learning and integrated symbolic-geometric robotic planning.
NSRTs have both symbolic and neural components, enabling a bilevel planning scheme where symbolic AI planning in an outer loop guides continuous planning with neural models in an inner loop.
NSRTs can be learned after only tens or hundreds of training episodes, and then used for fast planning in new tasks that require up to 60 actions to reach the goal.
arXiv Detail & Related papers (2021-05-28T19:37:18Z) - Learning Symbolic Operators for Task and Motion Planning [29.639902380586253]
integrated task and motion planners (TAMP) handle the complex interaction between motion-level decisions and task-level plan feasibility.
TAMP approaches rely on domain-specific symbolic operators to guide the task-level search, making planning efficient.
We propose a bottom-up relational learning method for operator learning and show how the learned operators can be used for planning in a TAMP system.
arXiv Detail & Related papers (2021-02-28T19:08:56Z) - Transferable Task Execution from Pixels through Deep Planning Domain
Learning [46.88867228115775]
We propose Deep Planning Domain Learning (DPDL) to learn a hierarchical model.
DPDL learns a high-level model which predicts values for a set of logical predicates consisting of the current symbolic world state.
This allows us to perform complex, multi-step tasks even when the robot has not been explicitly trained on them.
arXiv Detail & Related papers (2020-03-08T05:51:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.