MultiEarth 2022 Deforestation Challenge -- ForestGump
- URL: http://arxiv.org/abs/2206.10831v1
- Date: Wed, 22 Jun 2022 04:10:07 GMT
- Title: MultiEarth 2022 Deforestation Challenge -- ForestGump
- Authors: Dongoo Lee, Yeonju Choi
- Abstract summary: We present an accurate deforestation estimation method with conventional UNet and comprehensive data processing.
The diverse channels of Sentinel-1, Sentinel-2 and Landsat 8 are carefully selected and utilized to train deep neural networks.
With the proposed method, deforestation status for novel queries are successfully estimated with high accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The estimation of deforestation in the Amazon Forest is challenge task
because of the vast size of the area and the difficulty of direct human access.
However, it is a crucial problem in that deforestation results in serious
environmental problems such as global climate change, reduced biodiversity,
etc. In order to effectively solve the problems, satellite imagery would be a
good alternative to estimate the deforestation of the Amazon. With a
combination of optical images and Synthetic aperture radar (SAR) images,
observation of such a massive area regardless of weather conditions become
possible. In this paper, we present an accurate deforestation estimation method
with conventional UNet and comprehensive data processing. The diverse channels
of Sentinel-1, Sentinel-2 and Landsat 8 are carefully selected and utilized to
train deep neural networks. With the proposed method, deforestation status for
novel queries are successfully estimated with high accuracy.
Related papers
- Deep Learning tools to support deforestation monitoring in the Ivory Coast using SAR and Optical satellite imagery [0.0]
Satellites can be employed to recognize the disappearance of the forest to prevent it from expand its area of interest.
Forest-Non-Forest map (FNF) has been used as ground truth for models based on Sentinel images input.
Models classifying forest and non-forests pixels over the area using open datasets to predict where deforestation could have occurred.
arXiv Detail & Related papers (2024-09-16T14:26:41Z) - Rapid Deforestation and Burned Area Detection using Deep Multimodal
Learning on Satellite Imagery [3.8073142980733]
Deforestation estimation and fire detection in the Amazon forest poses a significant challenge due to the vast size of the area.
multimodal satellite imagery and remote sensing offer a promising solution for estimating deforestation and detecting wildfire in the Amazonia region.
This research paper introduces a new curated dataset and a deep learning-based approach to solve these problems using convolutional neural networks (CNNs) and comprehensive data processing techniques.
arXiv Detail & Related papers (2023-07-10T21:49:30Z) - MultiEarth 2023 Deforestation Challenge -- Team FOREVER [0.2020917258669917]
It is important problem to accurately estimate deforestation of satellite imagery since this approach can analyse extensive area without direct human access.
In this paper, we present a multi-view learning strategy to predict deforestation status in the Amazon rainforest area with latest deep neural network models.
arXiv Detail & Related papers (2023-06-20T09:10:06Z) - ForestEyes Project: Conception, Enhancements, and Challenges [68.8204255655161]
This work presents a Citizen Science project called ForestEyes.
It uses volunteer's answers through the analysis and classification of remote sensing images to monitor deforestation regions in rainforests.
To evaluate the quality of those answers, different campaigns/workflows were launched using remote sensing images from Brazilian Legal Amazon.
arXiv Detail & Related papers (2022-08-24T17:48:12Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Detecting Deforestation from Sentinel-1 Data in the Absence of Reliable
Reference Data [3.222802562733787]
We propose and evaluate a novel method for deforestation detection in the absence of reliable reference data.
This method achieves a change detection sensitivity (producer's accuracy) of 96.5% in the study area.
The results show that Sentinel-1 data have the potential to advance the timeliness of global deforestation monitoring.
arXiv Detail & Related papers (2022-05-24T15:08:02Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - Tackling the Overestimation of Forest Carbon with Deep Learning and
Aerial Imagery [13.97765383479824]
This proposal paper describes the first systematic comparison of forest carbon estimation from aerial imagery, satellite imagery, and ground-truth field measurements.
Aerial imagery is significantly more expensive to collect and it is unclear by how much the higher resolution improves the forest carbon estimation.
Our initial results show that forest carbon estimates from satellite imagery can overestimate above-ground biomass by more than 10-times for tropical reforestation projects.
arXiv Detail & Related papers (2021-07-23T15:59:52Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Counting Cows: Tracking Illegal Cattle Ranching From High-Resolution
Satellite Imagery [59.32805936205217]
Cattle farming is responsible for 8.8% of greenhouse gas emissions worldwide.
We obtained satellite imagery of the Amazon at 40cm resolution, and compiled a dataset of 903 images containing a total of 28498 cattle.
Our experiments show promising results and highlight important directions for the next steps on both counting algorithms and the data collection process for solving such challenges.
arXiv Detail & Related papers (2020-11-14T19:07:39Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.