Dynamical detection of mean-field topological phases in an interacting
Chern insulator
- URL: http://arxiv.org/abs/2206.11018v3
- Date: Fri, 12 Aug 2022 03:45:36 GMT
- Title: Dynamical detection of mean-field topological phases in an interacting
Chern insulator
- Authors: Wei Jia, Long Zhang, Lin Zhang, Xiong-Jun Liu
- Abstract summary: We propose a scheme based on quench dynamics to detect the mean-field topological phase diagram of an insulator.
We find two characteristic times $t_s$ and $t_c$ which capture the emergence of dynamical self-consistent particle number density.
The number of mean-field topological phase is determined by the spin polarizations of four Dirac points at the time $t_s$.
- Score: 11.848843951626527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactions generically have important effects on the topological quantum
phases. For a quantum anomalous Hall (QAH) insulator, the presence of
interactions can qualitatively change the topological phase diagram which,
however, is typically hard to measure in the experiment. Here we propose a
novel scheme based on quench dynamics to detect the mean-field topological
phase diagram of an interacting Chern insulator, with nontrivial dynamical
quantum physics being uncovered. We focus on a two-dimensional QAH system in
the presence of a weak to intermediate Hubbard interaction which only drives a
magnetic order under the mean-field level. After quenching the Zeeman coupling,
both the mean-field Hamiltonian and many-body quantum state evolve over time.
This is in sharp contrast to quenching a non-interacting system, in which only
the many-body state evolves. We find two characteristic times $t_s$ and $t_c$
which capture the emergence of dynamical self-consistent particle number
density and dynamical topological phase transition for the time-dependent
Hamiltonian, respectively. An interesting result is that $t_s>t_c$ ($t_s<t_c$)
occurs in repulsive (attractive) interaction when the system is quenched from
an initial fully polarized state to the topologically nontrivial regimes, and
$t_s=t_c$ characterizes the topological phase boundaries. Moreover, the
topological number of mean-field topological phase is determined by the spin
polarizations of four Dirac points at the time $t_s$. With these results we
provide a feasible scheme to detect the mean-field topological phase diagram
via the two characteristic times in quench dynamics, which can reveal the novel
interacting effects on the topological phases and shall promote the
experimental observation.
Related papers
- Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Observation of a symmetry-protected topological phase in external
magnetic fields [1.4515101661933258]
We report the real-space observation of a symmetry-protected topological phase with interacting nuclear spins.
We probe the interaction-induced transition between two topologically distinct phases, both of which are classified by many-body Chern numbers.
Our findings enable direct characterization of topological features of quantum many-body states through gradually decreasing the strength of the introduced external fields.
arXiv Detail & Related papers (2022-08-10T14:08:01Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Higher-order topological quantum paramagnets [0.0]
Quantum paramagnets are strongly-correlated phases of matter where competing interactions frustrate magnetic order down to zero temperature.
In certain cases, quantum fluctuations induce instead topological order, supporting, in particular, fractionalized quasi-particle excitations.
We show how magnetic frustration can also give rise to higher-order topological properties.
arXiv Detail & Related papers (2021-07-21T14:47:32Z) - Characterizing Topological Excitations of a Long-Range Heisenberg Model
with Trapped Ions [0.0]
We propose a Floquet protocol to realize the antiferromagnetic Heisenberg model with power-law decaying interactions.
We show that this model features a quantum phase transition from a liquid to a valence bond solid that spontaneously breaks lattice translational symmetry.
We moreover introduce an interferometric protocol to characterize the topological excitations and the bulk topological invariants of the interacting many-body system.
arXiv Detail & Related papers (2020-12-16T19:00:02Z) - Self-organized topological insulator due to cavity-mediated correlated
tunneling [0.0]
We discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions.
The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry.
The emerging quantum phase is a topological insulator and is found at half fillings.
arXiv Detail & Related papers (2020-11-03T13:23:06Z) - Quantum dynamics in low-dimensional topological systems [0.0]
We study the quantum dynamics that take place in low dimensional topological systems, specifically 1D and 2D lattices.
We find that the topological nature of the bath reflects itself in the photon bound states and the effective dipolar interactions between the emitters.
arXiv Detail & Related papers (2020-08-05T10:58:35Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.