Chat, Shift and Perform: Bridging the Gap between Task-oriented and
Non-task-oriented Dialog Systems
- URL: http://arxiv.org/abs/2206.11813v1
- Date: Sun, 5 Jun 2022 05:00:18 GMT
- Title: Chat, Shift and Perform: Bridging the Gap between Task-oriented and
Non-task-oriented Dialog Systems
- Authors: Teppei Yoshino, Yosuke Fukuchi, Shoya Matsumori, Michita Imai
- Abstract summary: We propose CASPER, a novel dialog system consisting of three types of dialog models: chatter, shifter, and performer.
Shifter, which is designed for topic switching, enables a seamless flow of dialog from open-domain chat- to task-oriented dialog.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose CASPER (ChAt, Shift and PERform), a novel dialog system consisting
of three types of dialog models: chatter, shifter, and performer. Shifter,
which is designed for topic switching, enables a seamless flow of dialog from
open-domain chat- to task-oriented dialog. In a user study, CASPER gave a
better impression in terms of naturalness of response, lack of forced topic
switching, and satisfaction compared with a baseline dialog system trained in
an end-to-end manner. In an ablation study, we found that naturalness of
response, dialog satisfaction, and task-elicitation rate improved compared with
when shifter was removed from CASPER, indicating that topic shift with shifter
supports the introduction of natural task-oriented dialog.
Related papers
- MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging
Knowledge Graphs [15.876075659237722]
Multi-Passage to Dialogue (MP2D) generates question-answering datasets with natural topic transitions.
MP2D maps the flow of topics within a dialogue, effectively mirroring the dynamics of human conversation.
This study introduces a novel benchmark for topic shift dialogues, TS-WikiDialog.
arXiv Detail & Related papers (2024-03-09T06:28:48Z) - Unified Conversational Models with System-Initiated Transitions between
Chit-Chat and Task-Oriented Dialogues [4.714297769572548]
We investigate the potential initiative'' that occurs when there is a change between dialogue modes in one dialogue.
We contribute two efficient prompt models which can proactively generate a transition sentence to trigger system-initiated transitions.
arXiv Detail & Related papers (2023-07-04T11:53:23Z) - SPACE-3: Unified Dialog Model Pre-training for Task-Oriented Dialog
Understanding and Generation [123.37377363355363]
SPACE-3 is a novel unified semi-supervised pre-trained conversation model learning from large-scale dialog corpora.
It can be effectively fine-tuned on a wide range of downstream dialog tasks.
Results show that SPACE-3 achieves state-of-the-art performance on eight downstream dialog benchmarks.
arXiv Detail & Related papers (2022-09-14T14:17:57Z) - Adapting Task-Oriented Dialogue Models for Email Conversations [4.45709593827781]
In this paper, we provide an effective transfer learning framework (EMToD) that allows the latest development in dialogue models to be adapted for long-form conversations.
We show that the proposed EMToD framework improves intent detection performance over pre-trained language models by 45% and over pre-trained dialogue models by 30% for task-oriented email conversations.
arXiv Detail & Related papers (2022-08-19T16:41:34Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented
Dialogues [59.499965460525694]
We propose a unified dialogue system (UniDS) with the two aforementioned skills.
We design a unified dialogue data schema, compatible for both chit-chat and task-oriented dialogues.
We train UniDS with mixed dialogue data from a pretrained chit-chat dialogue model.
arXiv Detail & Related papers (2021-10-15T11:56:47Z) - TIAGE: A Benchmark for Topic-Shift Aware Dialog Modeling [32.28415754809567]
TIAGE is a new topic-shift aware dialog benchmark constructed utilizing human annotations on topic shifts.
Based on TIAGE, we introduce three tasks to investigate different scenarios of topic-shift modeling in dialog settings.
arXiv Detail & Related papers (2021-09-09T21:06:12Z) - Adding Chit-Chat to Enhance Task-Oriented Dialogues [36.93917437554091]
Chit-Chat can be added to task-oriented dialogues to make virtual assistant conversations more engaging and interactive.
We present our new chit-chat-based annotations to 23.8K dialogues from two popular task-oriented dialogue datasets.
We also propose three new models for adding chit-chat to task-oriented dialogues, explicitly trained to predict user goals and to generate contextually relevant chit-chat responses.
arXiv Detail & Related papers (2020-10-24T03:22:43Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z) - Conversation Learner -- A Machine Teaching Tool for Building Dialog
Managers for Task-Oriented Dialog Systems [57.082447660944965]
Conversation Learner is a machine teaching tool for building dialog managers.
It enables dialog authors to create a dialog flow using familiar tools, converting the dialog flow into a parametric model.
It allows dialog authors to improve the dialog manager over time by leveraging user-system dialog logs as training data.
arXiv Detail & Related papers (2020-04-09T00:10:54Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
Task-oriented dialog systems are attracting more and more attention in academic and industrial communities.
We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning, and (3) integrating domain knowledge into the dialog model.
arXiv Detail & Related papers (2020-03-17T01:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.