Prosody Cloning in Zero-Shot Multispeaker Text-to-Speech
- URL: http://arxiv.org/abs/2206.12229v1
- Date: Fri, 24 Jun 2022 11:54:59 GMT
- Title: Prosody Cloning in Zero-Shot Multispeaker Text-to-Speech
- Authors: Florian Lux and Julia Koch and Ngoc Thang Vu
- Abstract summary: We show that it is possible to clone the voice of a speaker as well as the prosody of a spoken reference independently without any degradation in quality.
All of our code and trained models are available, alongside static and interactive demos.
- Score: 25.707717591185386
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The cloning of a speaker's voice using an untranscribed reference sample is
one of the great advances of modern neural text-to-speech (TTS) methods.
Approaches for mimicking the prosody of a transcribed reference audio have also
been proposed recently. In this work, we bring these two tasks together for the
first time through utterance level normalization in conjunction with an
utterance level speaker embedding. We further introduce a lightweight aligner
for extracting fine-grained prosodic features, that can be finetuned on
individual samples within seconds. We show that it is possible to clone the
voice of a speaker as well as the prosody of a spoken reference independently
without any degradation in quality and high similarity to both original voice
and prosody, as our objective evaluation and human study show. All of our code
and trained models are available, alongside static and interactive demos.
Related papers
- Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
A novel point of the proposed method is the direct use of the SSL model to obtain embedding vectors from speech representations trained with a large amount of data.
The disentangled embeddings will enable us to achieve better reproduction performance for unseen speakers and rhythm transfer conditioned by different speeches.
arXiv Detail & Related papers (2023-04-24T10:15:58Z) - Controllable speech synthesis by learning discrete phoneme-level
prosodic representations [53.926969174260705]
We present a novel method for phoneme-level prosody control of F0 and duration using intuitive discrete labels.
We propose an unsupervised prosodic clustering process which is used to discretize phoneme-level F0 and duration features from a multispeaker speech dataset.
arXiv Detail & Related papers (2022-11-29T15:43:36Z) - ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual
Multi-Speaker Text-to-Speech [58.93395189153713]
We extend the pretraining method for cross-lingual multi-speaker speech synthesis tasks.
We propose a speech-text joint pretraining framework, where we randomly mask the spectrogram and the phonemes.
Our model shows great improvements over speaker-embedding-based multi-speaker TTS methods.
arXiv Detail & Related papers (2022-11-07T13:35:16Z) - Using multiple reference audios and style embedding constraints for
speech synthesis [68.62945852651383]
The proposed model can improve the speech naturalness and content quality with multiple reference audios.
The model can also outperform the baseline model in ABX preference tests of style similarity.
arXiv Detail & Related papers (2021-10-09T04:24:29Z) - Speech Resynthesis from Discrete Disentangled Self-Supervised
Representations [49.48053138928408]
We propose using self-supervised discrete representations for the task of speech resynthesis.
We extract low-bitrate representations for speech content, prosodic information, and speaker identity.
Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods.
arXiv Detail & Related papers (2021-04-01T09:20:33Z) - Investigating on Incorporating Pretrained and Learnable Speaker
Representations for Multi-Speaker Multi-Style Text-to-Speech [54.75722224061665]
In this work, we investigate different speaker representations and proposed to integrate pretrained and learnable speaker representations.
The FastSpeech 2 model combined with both pretrained and learnable speaker representations shows great generalization ability on few-shot speakers.
arXiv Detail & Related papers (2021-03-06T10:14:33Z) - Expressive Neural Voice Cloning [12.010555227327743]
We propose a controllable voice cloning method that allows fine-grained control over various style aspects of the synthesized speech for an unseen speaker.
We show that our framework can be used for various expressive voice cloning tasks using only a few transcribed or untranscribed speech samples for a new speaker.
arXiv Detail & Related papers (2021-01-30T05:09:57Z) - NAUTILUS: a Versatile Voice Cloning System [44.700803634034486]
NAUTILUS can generate speech with a target voice either from a text input or a reference utterance of an arbitrary source speaker.
It can clone unseen voices using untranscribed speech of target speakers on the basis of the backpropagation algorithm.
It achieves comparable quality with state-of-the-art TTS and VC systems when cloning with just five minutes of untranscribed speech.
arXiv Detail & Related papers (2020-05-22T05:00:20Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
We propose a semi-supervised learning approach for multi-speaker text-to-speech (TTS)
A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation.
We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy.
arXiv Detail & Related papers (2020-05-16T15:47:11Z) - From Speaker Verification to Multispeaker Speech Synthesis, Deep
Transfer with Feedback Constraint [11.982748481062542]
This paper presents a system involving feedback constraint for multispeaker speech synthesis.
We manage to enhance the knowledge transfer from the speaker verification to the speech synthesis by engaging the speaker verification network.
The model is trained and evaluated on publicly available datasets.
arXiv Detail & Related papers (2020-05-10T06:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.