RSTAM: An Effective Black-Box Impersonation Attack on Face Recognition
using a Mobile and Compact Printer
- URL: http://arxiv.org/abs/2206.12590v1
- Date: Sat, 25 Jun 2022 08:16:55 GMT
- Title: RSTAM: An Effective Black-Box Impersonation Attack on Face Recognition
using a Mobile and Compact Printer
- Authors: Xiaoliang Liu, Furao Shen, Jian Zhao, Changhai Nie
- Abstract summary: We propose a new method to attack face recognition models or systems called RSTAM.
RSTAM enables an effective black-box impersonation attack using an adversarial mask printed by a mobile and compact printer.
The performance of the attacks is also evaluated on state-of-the-art commercial face recognition systems: Face++, Baidu, Aliyun, Tencent, and Microsoft.
- Score: 10.245536402327096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face recognition has achieved considerable progress in recent years thanks to
the development of deep neural networks, but it has recently been discovered
that deep neural networks are vulnerable to adversarial examples. This means
that face recognition models or systems based on deep neural networks are also
susceptible to adversarial examples. However, the existing methods of attacking
face recognition models or systems with adversarial examples can effectively
complete white-box attacks but not black-box impersonation attacks, physical
attacks, or convenient attacks, particularly on commercial face recognition
systems. In this paper, we propose a new method to attack face recognition
models or systems called RSTAM, which enables an effective black-box
impersonation attack using an adversarial mask printed by a mobile and compact
printer. First, RSTAM enhances the transferability of the adversarial masks
through our proposed random similarity transformation strategy. Furthermore, we
propose a random meta-optimization strategy for ensembling several pre-trained
face models to generate more general adversarial masks. Finally, we conduct
experiments on the CelebA-HQ, LFW, Makeup Transfer (MT), and CASIA-FaceV5
datasets. The performance of the attacks is also evaluated on state-of-the-art
commercial face recognition systems: Face++, Baidu, Aliyun, Tencent, and
Microsoft. Extensive experiments show that RSTAM can effectively perform
black-box impersonation attacks on face recognition models or systems.
Related papers
- MakeupAttack: Feature Space Black-box Backdoor Attack on Face Recognition via Makeup Transfer [6.6251662169603005]
We propose a novel feature backdoor attack against face recognition via makeup transfer, dubbed MakeupAttack.
In our attack, we design an iterative training paradigm to learn the subtle features of the proposed makeup-style trigger.
The results demonstrate that our proposed attack method can bypass existing state-of-the-art defenses while maintaining effectiveness, robustness, naturalness, and stealthiness, without compromising model performance.
arXiv Detail & Related papers (2024-08-22T11:39:36Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
We propose an Adversarial Semantic Mask Attack framework (ASMA) which can generate adversarial examples with good transferability and invisibility.
Specifically, we propose a novel adversarial semantic mask generative model, which can constrain generated perturbations in local semantic regions for good stealthiness.
arXiv Detail & Related papers (2024-06-16T10:38:11Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Attribute-Guided Encryption with Facial Texture Masking [64.77548539959501]
We propose Attribute Guided Encryption with Facial Texture Masking to protect users from unauthorized facial recognition systems.
Our proposed method produces more natural-looking encrypted images than state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T23:50:43Z) - Is Face Recognition Safe from Realizable Attacks? [1.7214499647717132]
Face recognition is a popular form of biometric authentication and due to its widespread use, attacks have become more common as well.
Recent studies show that Face Recognition Systems are vulnerable to attacks and can lead to erroneous identification of faces.
We propose an attack scheme where the attacker can generate realistic synthesized face images with subtle perturbations and physically realize that onto his face to attack black-box face recognition systems.
arXiv Detail & Related papers (2022-10-15T03:52:53Z) - Restricted Black-box Adversarial Attack Against DeepFake Face Swapping [70.82017781235535]
We introduce a practical adversarial attack that does not require any queries to the facial image forgery model.
Our method is built on a substitute model persuing for face reconstruction and then transfers adversarial examples from the substitute model directly to inaccessible black-box DeepFake models.
arXiv Detail & Related papers (2022-04-26T14:36:06Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
Deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples.
transferable adversarial examples can severely hinder the robustness of DCNNs.
We propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models.
We generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries.
arXiv Detail & Related papers (2020-04-13T06:44:33Z) - Adversarial Light Projection Attacks on Face Recognition Systems: A
Feasibility Study [21.42041262836322]
We investigate the feasibility of conducting real-time physical attacks on face recognition systems using adversarial light projections.
The adversary generates a digital adversarial pattern using one or more images of the target available to the adversary.
The digital adversarial pattern is then projected onto the adversary's face in the physical domain to either impersonate a target (impersonation) or evade recognition (obfuscation)
arXiv Detail & Related papers (2020-03-24T23:06:25Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.