Measuring and Improving the Use of Graph Information in Graph Neural
Networks
- URL: http://arxiv.org/abs/2206.13170v1
- Date: Mon, 27 Jun 2022 10:27:28 GMT
- Title: Measuring and Improving the Use of Graph Information in Graph Neural
Networks
- Authors: Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard T. B. Ma,
Hongzhi Chen, Ming-Chang Yang
- Abstract summary: Graph neural networks (GNNs) have been widely used for representation learning on graph data.
This paper introduces a context-surrounding GNN framework and proposes two smoothness metrics to measure the quantity and quality of information obtained from graph data.
A new GNN model, called CS-GNN, is then designed to improve the use of graph information based on the smoothness values of a graph.
- Score: 38.41049128525036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have been widely used for representation
learning on graph data. However, there is limited understanding on how much
performance GNNs actually gain from graph data. This paper introduces a
context-surrounding GNN framework and proposes two smoothness metrics to
measure the quantity and quality of information obtained from graph data. A new
GNN model, called CS-GNN, is then designed to improve the use of graph
information based on the smoothness values of a graph. CS-GNN is shown to
achieve better performance than existing methods in different types of real
graphs.
Related papers
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
We propose a novel Graph structure Prompt Learning method (GPL) to enhance the training of Graph networks (GNNs)
GPL employs task-independent graph structure losses to encourage GNNs to learn intrinsic graph characteristics while simultaneously solving downstream tasks.
In experiments on eleven real-world datasets, after being trained by neural prediction, GNNs significantly outperform their original performance on node classification, graph classification, and edge tasks.
arXiv Detail & Related papers (2024-07-16T03:59:18Z) - Transferability of Graph Neural Networks using Graphon and Sampling Theories [0.0]
Graph neural networks (GNNs) have become powerful tools for processing graph-based information in various domains.
A desirable property of GNNs is transferability, where a trained network can swap in information from a different graph without retraining and retain its accuracy.
We contribute to the application of graphons to GNNs by presenting an explicit two-layer graphon neural network (WNN) architecture.
arXiv Detail & Related papers (2023-07-25T02:11:41Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - KerGNNs: Interpretable Graph Neural Networks with Graph Kernels [14.421535610157093]
Graph neural networks (GNNs) have become the state-of-the-art method in downstream graph-related tasks.
We propose a novel GNN framework, termed textit Kernel Graph Neural Networks (KerGNNs)
KerGNNs integrate graph kernels into the message passing process of GNNs.
We show that our method achieves competitive performance compared with existing state-of-the-art methods.
arXiv Detail & Related papers (2022-01-03T06:16:30Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.