LaRa: Latents and Rays for Multi-Camera Bird's-Eye-View Semantic
Segmentation
- URL: http://arxiv.org/abs/2206.13294v1
- Date: Mon, 27 Jun 2022 13:37:50 GMT
- Title: LaRa: Latents and Rays for Multi-Camera Bird's-Eye-View Semantic
Segmentation
- Authors: Florent Bartoccioni, \'Eloi Zablocki, Andrei Bursuc, Patrick P\'erez,
Matthieu Cord, Karteek Alahari
- Abstract summary: We present 'LaRa', an efficient encoder-decoder, transformer-based model for vehicle semantic segmentation from multiple cameras.
Our approach uses a system of cross-attention to aggregate information over multiple sensors into a compact, yet rich, collection of latent representations.
- Score: 43.12994451281451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works in autonomous driving have widely adopted the bird's-eye-view
(BEV) semantic map as an intermediate representation of the world. Online
prediction of these BEV maps involves non-trivial operations such as
multi-camera data extraction as well as fusion and projection into a common
top-view grid. This is usually done with error-prone geometric operations
(e.g., homography or back-projection from monocular depth estimation) or
expensive direct dense mapping between image pixels and pixels in BEV (e.g.,
with MLP or attention). In this work, we present 'LaRa', an efficient
encoder-decoder, transformer-based model for vehicle semantic segmentation from
multiple cameras. Our approach uses a system of cross-attention to aggregate
information over multiple sensors into a compact, yet rich, collection of
latent representations. These latent representations, after being processed by
a series of self-attention blocks, are then reprojected with a second
cross-attention in the BEV space. We demonstrate that our model outperforms on
nuScenes the best previous works using transformers.
Related papers
- Multi-camera Bird's Eye View Perception for Autonomous Driving [17.834495597639805]
It is essential to produce perception outputs in 3D to enable the spatial reasoning of other agents and structures.
The most basic approach to achieving the desired BEV representation from a camera image is IPM, assuming a flat ground surface.
More recent approaches use deep neural networks to output directly in BEV space.
arXiv Detail & Related papers (2023-09-16T19:12:05Z) - BEV-Locator: An End-to-end Visual Semantic Localization Network Using
Multi-View Images [13.258689143949912]
We propose an end-to-end visual semantic localization neural network using multi-view camera images.
The BEV-Locator is capable to estimate the vehicle poses under versatile scenarios.
Experiments report satisfactory accuracy with mean absolute errors of 0.052m, 0.135m and 0.251$circ$ in lateral, longitudinal translation and heading angle degree.
arXiv Detail & Related papers (2022-11-27T20:24:56Z) - Estimation of Appearance and Occupancy Information in Birds Eye View
from Surround Monocular Images [2.69840007334476]
Birds-eye View (BEV) expresses the location of different traffic participants in the ego vehicle frame from a top-down view.
We propose a novel representation that captures various traffic participants appearance and occupancy information from an array of monocular cameras covering 360 deg field of view (FOV)
We use a learned image embedding of all camera images to generate a BEV of the scene at any instant that captures both appearance and occupancy of the scene.
arXiv Detail & Related papers (2022-11-08T20:57:56Z) - ViT-BEVSeg: A Hierarchical Transformer Network for Monocular
Birds-Eye-View Segmentation [2.70519393940262]
We evaluate the use of vision transformers (ViT) as a backbone architecture to generate Bird Eye View (BEV) maps.
Our network architecture, ViT-BEVSeg, employs standard vision transformers to generate a multi-scale representation of the input image.
We evaluate our approach on the nuScenes dataset demonstrating a considerable improvement relative to state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-31T10:18:36Z) - BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation [105.96557764248846]
We introduce BEVFusion, a generic multi-task multi-sensor fusion framework.
It unifies multi-modal features in the shared bird's-eye view representation space.
It achieves 1.3% higher mAP and NDS on 3D object detection and 13.6% higher mIoU on BEV map segmentation, with 1.9x lower cost.
arXiv Detail & Related papers (2022-05-26T17:59:35Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
We present BEVerse, a unified framework for 3D perception and prediction based on multi-camera systems.
We show that the multi-task BEVerse outperforms single-task methods on 3D object detection, semantic map construction, and motion prediction.
arXiv Detail & Related papers (2022-05-19T17:55:35Z) - GitNet: Geometric Prior-based Transformation for Birds-Eye-View
Segmentation [105.19949897812494]
Birds-eye-view (BEV) semantic segmentation is critical for autonomous driving.
We present a novel two-stage Geometry Prior-based Transformation framework named GitNet.
arXiv Detail & Related papers (2022-04-16T06:46:45Z) - M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified
Birds-Eye View Representation [145.6041893646006]
M$2$BEV is a unified framework that jointly performs 3D object detection and map segmentation.
M$2$BEV infers both tasks with a unified model and improves efficiency.
arXiv Detail & Related papers (2022-04-11T13:43:25Z) - BEVSegFormer: Bird's Eye View Semantic Segmentation From Arbitrary
Camera Rigs [3.5728676902207988]
We present an effective transformer-based method for BEV semantic segmentation from arbitrary camera rigs.
Specifically, our method first encodes image features from arbitrary cameras with a shared backbone.
An efficient multi-camera deformable attention unit is designed to carry out the BEV-to-image view transformation.
arXiv Detail & Related papers (2022-03-08T12:39:51Z) - Lift, Splat, Shoot: Encoding Images From Arbitrary Camera Rigs by
Implicitly Unprojecting to 3D [100.93808824091258]
We propose a new end-to-end architecture that directly extracts a bird's-eye-view representation of a scene given image data from an arbitrary number of cameras.
Our approach is to "lift" each image individually into a frustum of features for each camera, then "splat" all frustums into a bird's-eye-view grid.
We show that the representations inferred by our model enable interpretable end-to-end motion planning by "shooting" template trajectories into a bird's-eye-view cost map output by our network.
arXiv Detail & Related papers (2020-08-13T06:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.