Causal Dynamics Learning for Task-Independent State Abstraction
- URL: http://arxiv.org/abs/2206.13452v1
- Date: Mon, 27 Jun 2022 17:02:53 GMT
- Title: Causal Dynamics Learning for Task-Independent State Abstraction
- Authors: Zizhao Wang, Xuesu Xiao, Zifan Xu, Yuke Zhu, Peter Stone
- Abstract summary: We introduce Causal Dynamics Learning for Task-Independent State Abstraction (CDL)
CDL learns a theoretically proved causal dynamics model that removes unnecessary dependencies between state variables and the action.
A state abstraction can then be derived from the learned dynamics.
- Score: 61.707048209272884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning dynamics models accurately is an important goal for Model-Based
Reinforcement Learning (MBRL), but most MBRL methods learn a dense dynamics
model which is vulnerable to spurious correlations and therefore generalizes
poorly to unseen states. In this paper, we introduce Causal Dynamics Learning
for Task-Independent State Abstraction (CDL), which first learns a
theoretically proved causal dynamics model that removes unnecessary
dependencies between state variables and the action, thus generalizing well to
unseen states. A state abstraction can then be derived from the learned
dynamics, which not only improves sample efficiency but also applies to a wider
range of tasks than existing state abstraction methods. Evaluated on two
simulated environments and downstream tasks, both the dynamics model and
policies learned by the proposed method generalize well to unseen states and
the derived state abstraction improves sample efficiency compared to learning
without it.
Related papers
- Efficient Exploration and Discriminative World Model Learning with an Object-Centric Abstraction [19.59151245929067]
We study whether giving an agent an object-centric mapping (describing a set of items and their attributes) allow for more efficient learning.
We find this problem is best solved hierarchically by modelling items at a higher level of state abstraction to pixels.
We make use of this to propose a fully model-based algorithm that learns a discriminative world model.
arXiv Detail & Related papers (2024-08-21T17:59:31Z) - Building Minimal and Reusable Causal State Abstractions for
Reinforcement Learning [63.58935783293342]
Causal Bisimulation Modeling (CBM) is a method that learns the causal relationships in the dynamics and reward functions for each task to derive a minimal, task-specific abstraction.
CBM's learned implicit dynamics models identify the underlying causal relationships and state abstractions more accurately than explicit ones.
arXiv Detail & Related papers (2024-01-23T05:43:15Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Learning Dynamic Abstract Representations for Sample-Efficient
Reinforcement Learning [22.25237742815589]
In many real-world problems, the learning agent needs to learn a problem's abstractions and solution simultaneously.
This paper presents a novel top-down approach for constructing state abstractions while carrying out reinforcement learning.
arXiv Detail & Related papers (2022-10-04T23:05:43Z) - Dynamic probabilistic logic models for effective abstractions in RL [35.54018388244684]
RePReL is a hierarchical framework that leverages a relational planner to provide useful state abstractions for learning.
Our experiments show that RePReL not only achieves better performance and efficient learning on the task at hand but also demonstrates better generalization to unseen tasks.
arXiv Detail & Related papers (2021-10-15T18:53:04Z) - Model-Invariant State Abstractions for Model-Based Reinforcement
Learning [54.616645151708994]
We introduce a new type of state abstraction called textitmodel-invariance.
This allows for generalization to novel combinations of unseen values of state variables.
We prove that an optimal policy can be learned over this model-invariance state abstraction.
arXiv Detail & Related papers (2021-02-19T10:37:54Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
We decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it.
In order to encode dynamics-specific information into the context latent vector, we introduce a novel loss function that encourages the context latent vector to be useful for predicting both forward and backward dynamics.
The proposed method achieves superior generalization ability across various simulated robotics and control tasks, compared to existing RL schemes.
arXiv Detail & Related papers (2020-05-14T08:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.