Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting
- URL: http://arxiv.org/abs/2206.13816v1
- Date: Tue, 28 Jun 2022 08:11:12 GMT
- Title: Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting
- Authors: Junchen Ye, Zihan Liu, Bowen Du, Leilei Sun, Weimiao Li, Yanjie Fu,
Hui Xiong
- Abstract summary: We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
- Score: 50.901984244738806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown great promise in applying graph neural networks for
multivariate time series forecasting, where the interactions of time series are
described as a graph structure and the variables are represented as the graph
nodes. Along this line, existing methods usually assume that the graph
structure (or the adjacency matrix), which determines the aggregation manner of
graph neural network, is fixed either by definition or self-learning. However,
the interactions of variables can be dynamic and evolutionary in real-world
scenarios. Furthermore, the interactions of time series are quite different if
they are observed at different time scales. To equip the graph neural network
with a flexible and practical graph structure, in this paper, we investigate
how to model the evolutionary and multi-scale interactions of time series. In
particular, we first provide a hierarchical graph structure cooperated with the
dilated convolution to capture the scale-specific correlations among time
series. Then, a series of adjacency matrices are constructed under a recurrent
manner to represent the evolving correlations at each layer. Moreover, a
unified neural network is provided to integrate the components above to get the
final prediction. In this way, we can capture the pair-wise correlations and
temporal dependency simultaneously. Finally, experiments on both single-step
and multi-step forecasting tasks demonstrate the superiority of our method over
the state-of-the-art approaches.
Related papers
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - TimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting [20.03223916749058]
Time series forecasting lies at the core of important real-world applications in science and engineering.
We propose TimeGNN, a method that learns dynamic temporal graph representations.
TimeGNN achieves inference times 4 to 80 times faster than other state-of-the-art graph-based methods.
arXiv Detail & Related papers (2023-07-27T08:10:19Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
We introduce a new framework for interpreting time series data by extracting and clustering the input representative patterns.
We run experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets.
arXiv Detail & Related papers (2023-06-06T16:24:27Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
Existing works merely view a dynamic graph as a sequence of changes.
We formulate dynamic graphs as temporal edge sequences associated with joining time of.
vertex and timespan of edges.
A time-aware Transformer is proposed to embed.
vertex' dynamic connections and ToEs into the learned.
vertex representations.
arXiv Detail & Related papers (2022-07-01T15:32:56Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Discrete Graph Structure Learning for Forecasting Multiple Time Series [14.459541930646205]
Time series forecasting is an extensively studied subject in statistics, economics, and computer science.
In this work, we propose learning the structure simultaneously with a graph neural network (GNN) if the graph is unknown.
Empirical evaluations show that our method is simpler, more efficient, and better performing than a recently proposed bilevel learning approach for graph structure learning.
arXiv Detail & Related papers (2021-01-18T03:36:33Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
This work presents a novel neural network architecture for time-series forecasting.
We named our method Recurrent Graph Evolution Neural Network (ReGENN)
An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones.
arXiv Detail & Related papers (2020-08-28T20:10:07Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.