Deep Neural Networks pruning via the Structured Perspective
Regularization
- URL: http://arxiv.org/abs/2206.14056v1
- Date: Tue, 28 Jun 2022 14:58:51 GMT
- Title: Deep Neural Networks pruning via the Structured Perspective
Regularization
- Authors: Matteo Cacciola, Antonio Frangioni, Xinlin Li and Andrea Lodi
- Abstract summary: In Machine Learning, Artificial Neural Networks (ANNs) are a very powerful tool, broadly used in many applications.
One of the most popular compression approaches is emphpruning, whereby entire elements of the ANN (links, nodes, channels, ldots) and the corresponding weights are deleted.
Since the nature of the problem is inherently (what elements to prune and what not), we propose a new pruning method based on Operational Research tools.
- Score: 5.061851539114448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Machine Learning, Artificial Neural Networks (ANNs) are a very powerful
tool, broadly used in many applications. Often, the selected (deep)
architectures include many layers, and therefore a large amount of parameters,
which makes training, storage and inference expensive. This motivated a stream
of research about compressing the original networks into smaller ones without
excessively sacrificing performances. Among the many proposed compression
approaches, one of the most popular is \emph{pruning}, whereby entire elements
of the ANN (links, nodes, channels, \ldots) and the corresponding weights are
deleted. Since the nature of the problem is inherently combinatorial (what
elements to prune and what not), we propose a new pruning method based on
Operational Research tools. We start from a natural Mixed-Integer-Programming
model for the problem, and we use the Perspective Reformulation technique to
strengthen its continuous relaxation. Projecting away the indicator variables
from this reformulation yields a new regularization term, which we call the
Structured Perspective Regularization, that leads to structured pruning of the
initial architecture. We test our method on some ResNet architectures applied
to CIFAR-10, CIFAR-100 and ImageNet datasets, obtaining competitive
performances w.r.t.~the state of the art for structured pruning.
Related papers
- Structurally Prune Anything: Any Architecture, Any Framework, Any Time [84.6210631783801]
We introduce Structurally Prune Anything (SPA), a versatile structured pruning framework for neural networks.
SPA supports pruning at any time, either before training, after training with fine-tuning, or after training without fine-tuning.
In extensive experiments, SPA shows competitive to state-of-the-art pruning performance across various architectures.
arXiv Detail & Related papers (2024-03-03T13:49:49Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Structured Pruning for Deep Convolutional Neural Networks: A survey [2.811264250666485]
Pruning neural networks has thus gained interest since it effectively lowers storage and computational costs.
This article surveys the recent progress towards structured pruning of deep CNNs.
We summarize and compare the state-of-the-art structured pruning techniques with respect to filter ranking methods, regularization methods, dynamic execution, neural architecture search, the lottery ticket hypothesis, and the applications of pruning.
arXiv Detail & Related papers (2023-03-01T15:12:55Z) - DepGraph: Towards Any Structural Pruning [68.40343338847664]
We study general structural pruning of arbitrary architecture like CNNs, RNNs, GNNs and Transformers.
We propose a general and fully automatic method, emphDependency Graph (DepGraph), to explicitly model the dependency between layers and comprehensively group parameters for pruning.
In this work, we extensively evaluate our method on several architectures and tasks, including ResNe(X)t, DenseNet, MobileNet and Vision transformer for images, GAT for graph, DGCNN for 3D point cloud, alongside LSTM for language, and demonstrate that, even with a
arXiv Detail & Related papers (2023-01-30T14:02:33Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
Pruning-as-Search (PaS) is an end-to-end channel pruning method to search out desired sub-network automatically and efficiently.
Our proposed architecture outperforms prior arts by around $1.0%$ top-1 accuracy on ImageNet-1000 classification task.
arXiv Detail & Related papers (2022-06-02T17:58:54Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
We tackle model efficiency by exploiting redundancy in the textitimplicit structure of the building blocks of convolutional neural networks.
We show how this decomposition can be applied to 2D and 3D kernels as well as the fully-connected layers.
arXiv Detail & Related papers (2020-08-06T04:38:38Z) - A Framework for Neural Network Pruning Using Gibbs Distributions [34.0576955010317]
Gibbs pruning is a novel framework for expressing and designing neural network pruning methods.
It can train and prune a network simultaneously in such a way that the learned weights and pruning mask are well-adapted for each other.
We achieve a new state-of-the-art result for pruning ResNet-56 with the CIFAR-10 dataset.
arXiv Detail & Related papers (2020-06-08T23:04:53Z) - Knapsack Pruning with Inner Distillation [11.04321604965426]
We propose a novel pruning method that optimize the final accuracy of the pruned network.
We prune the network channels while maintaining the high-level structure of the network.
Our method leads to state-of-the-art pruning results on ImageNet, CIFAR-10 and CIFAR-100 using ResNet backbones.
arXiv Detail & Related papers (2020-02-19T16:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.