Zero-Shot Building Control
- URL: http://arxiv.org/abs/2206.14191v1
- Date: Tue, 28 Jun 2022 17:56:40 GMT
- Title: Zero-Shot Building Control
- Authors: Scott R. Jeen, Jonathan M. Cullen
- Abstract summary: Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
Existing solutions require pre-training in simulators that are prohibitively expensive to obtain for every building in the world.
We show it is possible to perform safe, zero-shot control of buildings by combining ideas from system identification and model-based RL.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heating and cooling systems in buildings account for 31% of global energy
use, much of which are regulated by Rule Based Controllers (RBCs) that neither
maximise energy efficiency nor minimise emissions by interacting optimally with
the grid. Control via Reinforcement Learning (RL) has been shown to
significantly improve building energy efficiency, but existing solutions
require pre-training in simulators that are prohibitively expensive to obtain
for every building in the world. In response, we show it is possible to perform
safe, zero-shot control of buildings by combining ideas from system
identification and model-based RL. We call this combination PEARL
(Probabilistic Emission-Abating Reinforcement Learning) and show it reduces
emissions without pre-training, needing only a three hour commissioning period.
In experiments across three varied building energy simulations, we show PEARL
outperforms an existing RBC once, and popular RL baselines in all cases,
reducing building emissions by as much as 31% whilst maintaining thermal
comfort.
Related papers
- Real-World Data and Calibrated Simulation Suite for Offline Training of Reinforcement Learning Agents to Optimize Energy and Emission in Buildings for Environmental Sustainability [2.7624021966289605]
We present the first open source interactive HVAC control dataset extracted from live sensor measurements of devices in real office buildings.
For ease of use, our RL environments are all compatible with the OpenAI gym environment standard.
arXiv Detail & Related papers (2024-10-02T06:30:07Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Energy Optimization for HVAC Systems in Multi-VAV Open Offices: A Deep
Reinforcement Learning Approach [4.323740171581589]
HVAC systems account for about 40% of the total energy cost in the commercial sector.
We propose a low-complexity DRL-based model with multi-input multi-output architecture for the HVAC energy optimization of open-plan offices.
arXiv Detail & Related papers (2023-06-23T07:27:31Z) - MERLIN: Multi-agent offline and transfer learning for occupant-centric
energy flexible operation of grid-interactive communities using smart meter
data and CityLearn [0.0]
Decarbonization of buildings presents new challenges for the reliability of the electrical grid.
We propose the MERLIN framework and use a digital twin of a real-world grid-interactive residential community in CityLearn.
We show that independent RL-controllers for batteries improve building and district level compared to a reference by tailoring their policies to individual buildings.
arXiv Detail & Related papers (2022-12-31T21:37:14Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - Development of a Soft Actor Critic Deep Reinforcement Learning Approach
for Harnessing Energy Flexibility in a Large Office Building [0.0]
This research is concerned with the novel application and investigation of Soft Actor Critic' (SAC) based Deep Reinforcement Learning (DRL)
SAC is a model-free DRL technique that is able to handle continuous action spaces.
arXiv Detail & Related papers (2021-04-25T10:33:35Z) - Controlling Rayleigh-B\'enard convection via Reinforcement Learning [62.997667081978825]
The identification of effective control strategies to suppress or enhance the convective heat exchange under fixed external thermal gradients is an outstanding fundamental and technological issue.
In this work, we explore a novel approach, based on a state-of-the-art Reinforcement Learning (RL) algorithm.
We show that our RL-based control is able to stabilize the conductive regime and bring the onset of convection up to a Rayleigh number.
arXiv Detail & Related papers (2020-03-31T16:39:25Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.