On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network
- URL: http://arxiv.org/abs/2206.15025v2
- Date: Mon, 27 Mar 2023 16:09:27 GMT
- Title: On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network
- Authors: Hongchang Gao, Bin Gu, My T. Thai
- Abstract summary: Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
- Score: 55.56019538079826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bilevel optimization has been applied to a wide variety of machine learning
models, and numerous stochastic bilevel optimization algorithms have been
developed in recent years. However, most existing algorithms restrict their
focus on the single-machine setting so that they are incapable of handling the
distributed data. To address this issue, under the setting where all
participants compose a network and perform peer-to-peer communication in this
network, we developed two novel decentralized stochastic bilevel optimization
algorithms based on the gradient tracking communication mechanism and two
different gradient estimators. Additionally, we established their convergence
rates for nonconvex-strongly-convex problems with novel theoretical analysis
strategies. To our knowledge, this is the first work achieving these
theoretical results. Finally, we applied our algorithms to practical machine
learning models, and the experimental results confirmed the efficacy of our
algorithms.
Related papers
- On the Communication Complexity of Decentralized Bilevel Optimization [40.45379954138305]
We propose two novel decentralized bilevel gradient descent algorithms based on simultaneous and alternating update strategies.
Our algorithms can achieve faster convergence rates and lower communication costs than existing methods.
This is the first time such favorable theoretical results have been achieved with mild assumptions in the heterogeneous setting.
arXiv Detail & Related papers (2023-11-19T14:56:26Z) - A Single-Loop Algorithm for Decentralized Bilevel Optimization [11.67135350286933]
We propose a novel single-loop algorithm for solving decentralized bilevel optimization with a strongly convex lower-level problem.
Our approach is a fully single-loop method that approximates the hypergradient using only two matrix-vector multiplications per iteration.
Our analysis demonstrates that the proposed algorithm achieves the best-known convergence rate for bilevel optimization algorithms.
arXiv Detail & Related papers (2023-11-15T13:29:49Z) - Decentralized Multi-Level Compositional Optimization Algorithms with Level-Independent Convergence Rate [26.676582181833584]
Decentralized multi-level optimization is challenging because of the multilevel structure and decentralized communication.
We develop two novel decentralized optimization algorithms to optimize the multi-level compositional problem.
arXiv Detail & Related papers (2023-06-06T00:23:28Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range machine learning.
This paper develops two novel decentralized minimax optimization algorithms for the non-strongly-nonconcave problem.
arXiv Detail & Related papers (2023-04-24T02:19:39Z) - On the Convergence of Momentum-Based Algorithms for Federated Stochastic
Bilevel Optimization Problems [22.988563731766586]
In particular, we developed two momentum-based algorithms for optimizing this kind of problem.
We established the convergence rate of these two algorithms, providing their sample and communication complexities.
arXiv Detail & Related papers (2022-04-28T06:14:21Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Bilevel Optimization for Machine Learning: Algorithm Design and
Convergence Analysis [12.680169619392695]
This thesis provides a comprehensive convergence rate analysis for bilevel optimization algorithms.
For the problem-based formulation, we provide a convergence rate analysis for AID- and ITD-based bilevel algorithms.
We then develop acceleration bilevel algorithms, for which we provide shaper convergence analysis with relaxed assumptions.
arXiv Detail & Related papers (2021-07-31T22:05:47Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.