Interpretable Melody Generation from Lyrics with Discrete-Valued
Adversarial Training
- URL: http://arxiv.org/abs/2206.15027v1
- Date: Thu, 30 Jun 2022 05:45:47 GMT
- Title: Interpretable Melody Generation from Lyrics with Discrete-Valued
Adversarial Training
- Authors: Wei Duan, Zhe Zhang, Yi Yu, Keizo Oyama
- Abstract summary: Gumbel-Softmax is exploited to solve the non-differentiability problem of generating music attributes by Generative Adversarial Networks (GANs)
Users can listen to the generated AI song as well as recreate a new song by selecting from recommended music attributes.
- Score: 12.02541352832997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating melody from lyrics is an interesting yet challenging task in the
area of artificial intelligence and music. However, the difficulty of keeping
the consistency between input lyrics and generated melody limits the generation
quality of previous works. In our proposal, we demonstrate our proposed
interpretable lyrics-to-melody generation system which can interact with users
to understand the generation process and recreate the desired songs. To improve
the reliability of melody generation that matches lyrics, mutual information is
exploited to strengthen the consistency between lyrics and generated melodies.
Gumbel-Softmax is exploited to solve the non-differentiability problem of
generating discrete music attributes by Generative Adversarial Networks (GANs).
Moreover, the predicted probabilities output by the generator is utilized to
recommend music attributes. Interacting with our lyrics-to-melody generation
system, users can listen to the generated AI song as well as recreate a new
song by selecting from recommended music attributes.
Related papers
- SongCreator: Lyrics-based Universal Song Generation [53.248473603201916]
SongCreator is a song-generation system designed to tackle the challenge of generating songs with both vocals and accompaniment given lyrics.
The model features two novel designs: a meticulously designed dual-sequence language model (M) to capture the information of vocals and accompaniment for song generation, and a series of attention mask strategies for DSLM.
Experiments demonstrate the effectiveness of SongCreator by achieving state-of-the-art or competitive performances on all eight tasks.
arXiv Detail & Related papers (2024-09-09T19:37:07Z) - Controllable Lyrics-to-Melody Generation [14.15838552524433]
We propose a controllable lyrics-to-melody generation network, ConL2M, which is able to generate realistic melodies from lyrics in user-desired musical style.
Our work contains three main novelties: 1) To model the dependencies of music attributes cross multiple sequences, inter-branch memory fusion (Memofu) is proposed to enable information flow between multi-branch stacked LSTM architecture; 2) Reference style embedding (RSE) is proposed to improve the quality of generation as well as control the musical style of generated melodies; 3) Sequence-level statistical loss (SeqLoss) is proposed to help the model learn sequence-level
arXiv Detail & Related papers (2023-06-05T06:14:08Z) - Unsupervised Melody-to-Lyric Generation [91.29447272400826]
We propose a method for generating high-quality lyrics without training on any aligned melody-lyric data.
We leverage the segmentation and rhythm alignment between melody and lyrics to compile the given melody into decoding constraints.
Our model can generate high-quality lyrics that are more on-topic, singable, intelligible, and coherent than strong baselines.
arXiv Detail & Related papers (2023-05-30T17:20:25Z) - Unsupervised Melody-Guided Lyrics Generation [84.22469652275714]
We propose to generate pleasantly listenable lyrics without training on melody-lyric aligned data.
We leverage the crucial alignments between melody and lyrics and compile the given melody into constraints to guide the generation process.
arXiv Detail & Related papers (2023-05-12T20:57:20Z) - Re-creation of Creations: A New Paradigm for Lyric-to-Melody Generation [158.54649047794794]
Re-creation of Creations (ROC) is a new paradigm for lyric-to-melody generation.
ROC achieves good lyric-melody feature alignment in lyric-to-melody generation.
arXiv Detail & Related papers (2022-08-11T08:44:47Z) - Youling: an AI-Assisted Lyrics Creation System [72.00418962906083]
This paper demonstrates textitYouling, an AI-assisted lyrics creation system, designed to collaborate with music creators.
In the lyrics generation process, textitYouling supports traditional one pass full-text generation mode as well as an interactive generation mode.
The system also provides a revision module which enables users to revise undesired sentences or words of lyrics repeatedly.
arXiv Detail & Related papers (2022-01-18T03:57:04Z) - Melody-Conditioned Lyrics Generation with SeqGANs [81.2302502902865]
We propose an end-to-end melody-conditioned lyrics generation system based on Sequence Generative Adversarial Networks (SeqGAN)
We show that the input conditions have no negative impact on the evaluation metrics while enabling the network to produce more meaningful results.
arXiv Detail & Related papers (2020-10-28T02:35:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.