Shifts 2.0: Extending The Dataset of Real Distributional Shifts
- URL: http://arxiv.org/abs/2206.15407v1
- Date: Thu, 30 Jun 2022 16:51:52 GMT
- Title: Shifts 2.0: Extending The Dataset of Real Distributional Shifts
- Authors: Andrey Malinin, Andreas Athanasopoulos, Muhamed Barakovic, Meritxell
Bach Cuadra, Mark J. F. Gales, Cristina Granziera, Mara Graziani, Nikolay
Kartashev, Konstantinos Kyriakopoulos, Po-Jui Lu, Nataliia Molchanova,
Antonis Nikitakis, Vatsal Raina, Francesco La Rosa, Eli Sivena, Vasileios
Tsarsitalidis, Efi Tsompopoulou, Elena Volf
- Abstract summary: We extend the Shifts dataset with two datasets sourced from industrial, high-risk applications of high societal importance.
We consider the tasks of segmentation of white matter Multiple Sclerosis lesions in 3D magnetic resonance brain images and the estimation of power consumption in marine cargo vessels.
These new datasets will allow researchers to further explore robust generalization and uncertainty estimation in new situations.
- Score: 25.31085238930148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributional shift, or the mismatch between training and deployment data,
is a significant obstacle to the usage of machine learning in high-stakes
industrial applications, such as autonomous driving and medicine. This creates
a need to be able to assess how robustly ML models generalize as well as the
quality of their uncertainty estimates. Standard ML baseline datasets do not
allow these properties to be assessed, as the training, validation and test
data are often identically distributed. Recently, a range of dedicated
benchmarks have appeared, featuring both distributionally matched and shifted
data. Among these benchmarks, the Shifts dataset stands out in terms of the
diversity of tasks as well as the data modalities it features. While most of
the benchmarks are heavily dominated by 2D image classification tasks, Shifts
contains tabular weather forecasting, machine translation, and vehicle motion
prediction tasks. This enables the robustness properties of models to be
assessed on a diverse set of industrial-scale tasks and either universal or
directly applicable task-specific conclusions to be reached. In this paper, we
extend the Shifts Dataset with two datasets sourced from industrial, high-risk
applications of high societal importance. Specifically, we consider the tasks
of segmentation of white matter Multiple Sclerosis lesions in 3D magnetic
resonance brain images and the estimation of power consumption in marine cargo
vessels. Both tasks feature ubiquitous distributional shifts and a strict
safety requirement due to the high cost of errors. These new datasets will
allow researchers to further explore robust generalization and uncertainty
estimation in new situations. In this work, we provide a description of the
dataset and baseline results for both tasks.
Related papers
- Prediction Accuracy & Reliability: Classification and Object Localization under Distribution Shift [1.433758865948252]
This study investigates the effect of natural distribution shift and weather augmentations on both detection quality and confidence estimation.
A novel dataset has been curated from publicly available autonomous driving datasets.
A granular analysis of CNNs under distribution shift allows to quantize the impact of different types of shifts on both, task performance and confidence estimation.
arXiv Detail & Related papers (2024-09-05T14:06:56Z) - Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
We propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation.
We validate our approach on six real world distribution shift benchmarks, and different data modalities.
arXiv Detail & Related papers (2023-04-17T01:33:24Z) - Identifying the Context Shift between Test Benchmarks and Production
Data [1.2259552039796024]
There exists a performance gap between machine learning models' accuracy on dataset benchmarks and real-world production data.
We outline two methods for identifying changes in context that lead to distribution shifts and model prediction errors.
We present two case-studies to highlight the implicit assumptions underlying applied machine learning models that tend to lead to errors.
arXiv Detail & Related papers (2022-07-03T14:54:54Z) - Evaluating Predictive Uncertainty and Robustness to Distributional Shift
Using Real World Data [0.0]
We propose metrics for general regression tasks using the Shifts Weather Prediction dataset.
We also present an evaluation of the baseline methods using these metrics.
arXiv Detail & Related papers (2021-11-08T17:32:10Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - Shifts: A Dataset of Real Distributional Shift Across Multiple
Large-Scale Tasks [44.61070965407907]
Given the current state of the field, a standardized large-scale dataset of tasks across a range of modalities affected by distributional shifts is necessary.
We propose the emphShifts dataset for evaluation of uncertainty estimates and robustness to distributional shift.
arXiv Detail & Related papers (2021-07-15T16:59:34Z) - WILDS: A Benchmark of in-the-Wild Distribution Shifts [157.53410583509924]
Distribution shifts can substantially degrade the accuracy of machine learning systems deployed in the wild.
We present WILDS, a curated collection of 8 benchmark datasets that reflect a diverse range of distribution shifts.
We show that standard training results in substantially lower out-of-distribution than in-distribution performance.
arXiv Detail & Related papers (2020-12-14T11:14:56Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.