Conditional Generation with a Question-Answering Blueprint
- URL: http://arxiv.org/abs/2207.00397v2
- Date: Mon, 1 May 2023 09:27:16 GMT
- Title: Conditional Generation with a Question-Answering Blueprint
- Authors: Shashi Narayan, Joshua Maynez, Reinald Kim Amplayo, Kuzman Ganchev,
Annie Louis, Fantine Huot, Anders Sandholm, Dipanjan Das, Mirella Lapata
- Abstract summary: We advocate planning as a useful intermediate representation for rendering conditional generation less opaque and more grounded.
We obtain blueprints automatically by exploiting state-of-the-art question generation technology.
We develop Transformer-based models, each varying in how they incorporate the blueprint in the generated output.
- Score: 84.95981645040281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to convey relevant and faithful information is critical for many
tasks in conditional generation and yet remains elusive for neural seq-to-seq
models whose outputs often reveal hallucinations and fail to correctly cover
important details. In this work, we advocate planning as a useful intermediate
representation for rendering conditional generation less opaque and more
grounded. Our work proposes a new conceptualization of text plans as a sequence
of question-answer (QA) pairs. We enhance existing datasets (e.g., for
summarization) with a QA blueprint operating as a proxy for both content
selection (i.e.,~what to say) and planning (i.e.,~in what order). We obtain
blueprints automatically by exploiting state-of-the-art question generation
technology and convert input-output pairs into input-blueprint-output tuples.
We develop Transformer-based models, each varying in how they incorporate the
blueprint in the generated output (e.g., as a global plan or iteratively).
Evaluation across metrics and datasets demonstrates that blueprint models are
more factual than alternatives which do not resort to planning and allow
tighter control of the generation output.
Related papers
- Learning to Plan and Generate Text with Citations [69.56850173097116]
We explore the attribution capabilities of plan-based models which have been recently shown to improve the faithfulness, grounding, and controllability of generated text.
We propose two attribution models that utilize different variants of blueprints, an abstractive model where questions are generated from scratch, and an extractive model where questions are copied from the input.
arXiv Detail & Related papers (2024-04-04T11:27:54Z) - Synthesize Step-by-Step: Tools, Templates and LLMs as Data Generators for Reasoning-Based Chart VQA [9.659820850719413]
We leverage Large Language Models (LLMs), which have shown to have strong reasoning ability, as an automatic data annotator.
Key innovation in our method lies in the Synthesize Step-by-Step strategy.
We significantly enhance the chart VQA models, achieving the state-of-the-art accuracy on the ChartQA and PlotQA datasets.
arXiv Detail & Related papers (2024-03-25T03:02:27Z) - Graph Guided Question Answer Generation for Procedural
Question-Answering [29.169773816553153]
We introduce a method for generating exhaustive and high-quality training data for task-specific question answering (QA) models.
Key technological enabler is a novel mechanism for automatic question-answer generation from procedural text.
We show that small models trained with our data achieve excellent performance on the target QA task, even exceeding that of GPT3 and ChatGPT.
arXiv Detail & Related papers (2024-01-24T17:01:42Z) - QASnowball: An Iterative Bootstrapping Framework for High-Quality
Question-Answering Data Generation [67.27999343730224]
We introduce an iterative bootstrapping framework for QA data augmentation (named QASnowball)
QASnowball can iteratively generate large-scale high-quality QA data based on a seed set of supervised examples.
We conduct experiments in the high-resource English scenario and the medium-resource Chinese scenario, and the experimental results show that the data generated by QASnowball can facilitate QA models.
arXiv Detail & Related papers (2023-09-19T05:20:36Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - Text-Blueprint: An Interactive Platform for Plan-based Conditional
Generation [84.95981645040281]
Planning can be a useful intermediate step to render conditional generation less opaque and more grounded.
We present a web browser-based demonstration for query-focused summarization that uses a sequence of question-answer pairs.
arXiv Detail & Related papers (2023-04-28T18:14:48Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Simplifying Paragraph-level Question Generation via Transformer Language
Models [0.0]
Question generation (QG) is a natural language generation task where a model is trained to ask questions corresponding to some input text.
A single Transformer-based unidirectional language model leveraging transfer learning can be used to produce high quality questions.
Our QG model, finetuned from GPT-2 Small, outperforms several paragraph-level QG baselines on the SQuAD dataset by 0.95 METEOR points.
arXiv Detail & Related papers (2020-05-03T14:57:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.