Long-Tail Prediction Uncertainty Aware Trajectory Planning for
Self-driving Vehicles
- URL: http://arxiv.org/abs/2207.00788v1
- Date: Sat, 2 Jul 2022 10:17:31 GMT
- Title: Long-Tail Prediction Uncertainty Aware Trajectory Planning for
Self-driving Vehicles
- Authors: Weitao Zhou, Zhong Cao, Nanshan Deng, Xiaoyu Liu, Kun Jiang and Diange
Yang
- Abstract summary: Recent studies have shown that deep learning models trained on a dataset following a long-tailed driving scenario distribution will suffer from large prediction errors in the "tails"
This work defines a notion of prediction model uncertainty to quantify high errors due to sparse data.
Results show that the proposed method can improve the safety of trajectory planning under the prediction uncertainty caused by insufficient data.
- Score: 12.645597960926601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A typical trajectory planner of autonomous driving usually relies on
predicting the future behavior of surrounding obstacles. In recent years,
prediction models based on deep learning have been widely used due to their
impressive performance. However, recent studies have shown that deep learning
models trained on a dataset following a long-tailed driving scenario
distribution will suffer from large prediction errors in the "tails," which
might lead to failures of the planner. To this end, this work defines a notion
of prediction model uncertainty to quantify high errors due to sparse data.
Moreover, this work proposes a trajectory planner to consider such prediction
uncertainty for safer performance. Firstly, the prediction model's uncertainty
due to insufficient training data is estimated by an ensemble network
structure. Then a trajectory planner is designed to consider the worst-case
arising from prediction uncertainty. The results show that the proposed method
can improve the safety of trajectory planning under the prediction uncertainty
caused by insufficient data. At the same time, with sufficient data, the
framework will not lead to overly conservative results. This technology helps
to improve the safety and reliability of autonomous vehicles under the
long-tail data distribution of the real world.
Related papers
- Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Data Uncertainty without Prediction Models [0.8223798883838329]
We propose an uncertainty estimation method named a Distance-weighted Class Impurity without explicit use of prediction models.
We verified that the Distance-weighted Class Impurity works effectively regardless of prediction models.
arXiv Detail & Related papers (2022-04-25T13:26:06Z) - On Adversarial Robustness of Trajectory Prediction for Autonomous
Vehicles [21.56253104577053]
Trajectory prediction is a critical component for autonomous vehicles to perform safe planning and navigation.
We propose a new adversarial attack that perturbs normal vehicle trajectories to maximize the prediction error.
Case studies show that if an adversary drives a vehicle close to the target AV following the adversarial trajectory, the AV may make an inaccurate prediction and make unsafe driving decisions.
arXiv Detail & Related papers (2022-01-13T16:33:04Z) - Propagating State Uncertainty Through Trajectory Forecasting [34.53847097769489]
Trajectory forecasting is surrounded by uncertainty as its inputs are produced by (noisy) upstream perception.
Most trajectory forecasting methods do not account for upstream uncertainty, instead taking only the most-likely values.
We present a novel method for incorporating perceptual state uncertainty in trajectory forecasting, a key component of which is a new statistical distance-based loss function.
arXiv Detail & Related papers (2021-10-07T08:51:16Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z) - From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [54.273455592965355]
Uncertainty in future trajectories stems from two sources: (a) sources known to the agent but unknown to the model, such as long term goals and (b)sources that are unknown to both the agent & the model, such as intent of other agents & irreducible randomness indecisions.
We model the epistemic un-certainty through multimodality in long term goals and the aleatoric uncertainty through multimodality in waypoints& paths.
To exemplify this dichotomy, we also propose a novel long term trajectory forecasting setting, with prediction horizons upto a minute, an order of magnitude longer than prior works.
arXiv Detail & Related papers (2020-12-02T21:01:29Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.