Variational Neural Networks
- URL: http://arxiv.org/abs/2207.01524v1
- Date: Mon, 4 Jul 2022 15:41:02 GMT
- Title: Variational Neural Networks
- Authors: Illia Oleksiienko, Dat Thanh Tran and Alexandros Iosifidis
- Abstract summary: We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
- Score: 88.24021148516319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Neural Networks (BNNs) provide a tool to estimate the uncertainty of
a neural network by considering a distribution over weights and sampling
different models for each input. In this paper, we propose a method for
uncertainty estimation in neural networks called Variational Neural Network
that, instead of considering a distribution over weights, generates parameters
for the output distribution of a layer by transforming its inputs with
learnable sub-layers. In uncertainty quality estimation experiments, we show
that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes
By Backpropagation methods.
Related papers
- An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
This paper presents a sample-free moment propagation technique to accurately characterize the input-output distributions of neural networks.
A key enabler of our technique is an analytic solution for the covariance of random variables passed through nonlinear activation functions.
The wide applicability and merits of the proposed technique are shown in experiments analyzing the input-output distributions of trained neural networks and training Bayesian neural networks.
arXiv Detail & Related papers (2024-03-24T14:08:24Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Understanding Weight Similarity of Neural Networks via Chain
Normalization Rule and Hypothesis-Training-Testing [58.401504709365284]
We present a weight similarity measure that can quantify the weight similarity of non-volution neural networks.
We first normalize the weights of neural networks by a chain normalization rule, which is used to introduce weight-training representation learning.
We extend traditional hypothesis-testing method to validate the hypothesis on the weight similarity of neural networks.
arXiv Detail & Related papers (2022-08-08T19:11:03Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Kalman Bayesian Neural Networks for Closed-form Online Learning [5.220940151628734]
We propose a novel approach for BNN learning via closed-form Bayesian inference.
The calculation of the predictive distribution of the output and the update of the weight distribution are treated as Bayesian filtering and smoothing problems.
This allows closed-form expressions for training the network's parameters in a sequential/online fashion without gradient descent.
arXiv Detail & Related papers (2021-10-03T07:29:57Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - pseudo-Bayesian Neural Networks for detecting Out of Distribution Inputs [12.429095025814345]
We propose pseudo-BNNs where instead of learning distributions over weights, we use point estimates and perturb weights at the time of inference.
Overall, this combination results in a principled technique to detect OOD samples at the time of inference.
arXiv Detail & Related papers (2021-02-02T06:23:04Z) - Scalable Bayesian neural networks by layer-wise input augmentation [20.279668821097918]
We introduce implicit Bayesian neural networks, a simple and scalable approach for uncertainty representation in deep learning.
We present appropriate input distributions and demonstrate state-of-the-art performance in terms of calibration, robustness and uncertainty characterisation over large-scale, multi-million parameter image classification tasks.
arXiv Detail & Related papers (2020-10-26T11:45:19Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.