High-Dimensional Private Empirical Risk Minimization by Greedy
Coordinate Descent
- URL: http://arxiv.org/abs/2207.01560v3
- Date: Sun, 9 Apr 2023 17:08:16 GMT
- Title: High-Dimensional Private Empirical Risk Minimization by Greedy
Coordinate Descent
- Authors: Paul Mangold, Aur\'elien Bellet, Joseph Salmon, Marc Tommasi
- Abstract summary: We study differentially private empirical risk minimization (DP-ERM)
We show theoretically that DP-GCD can achieve a logarithmic dependence on the dimension for a wide range of problems.
- Score: 11.49109939095326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study differentially private empirical risk minimization
(DP-ERM). It has been shown that the worst-case utility of DP-ERM reduces
polynomially as the dimension increases. This is a major obstacle to privately
learning large machine learning models. In high dimension, it is common for
some model's parameters to carry more information than others. To exploit this,
we propose a differentially private greedy coordinate descent (DP-GCD)
algorithm. At each iteration, DP-GCD privately performs a coordinate-wise
gradient step along the gradients' (approximately) greatest entry. We show
theoretically that DP-GCD can achieve a logarithmic dependence on the dimension
for a wide range of problems by naturally exploiting their structural
properties (such as quasi-sparse solutions). We illustrate this behavior
numerically, both on synthetic and real datasets.
Related papers
- Private Fine-tuning of Large Language Models with Zeroth-order Optimization [51.19403058739522]
Differentially private gradient descent (DP-SGD) allows models to be trained in a privacy-preserving manner.
We introduce DP-ZO, a private fine-tuning framework for large language models by privatizing zeroth order optimization methods.
arXiv Detail & Related papers (2024-01-09T03:53:59Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Pre-trained Perceptual Features Improve Differentially Private Image
Generation [8.659595986100738]
Training even moderately-sized generative models with differentially-private descent gradient (DP-SGD) is difficult.
We advocate building off a good, relevant representation on an informative public dataset, then learning to model the private data with that representation.
Our work introduces simple yet powerful foundations for reducing the gap between private and non-private deep generative models.
arXiv Detail & Related papers (2022-05-25T16:46:01Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy (DP) provides a formal framework for training machine learning models with individual example level privacy.
Private training using DP-SGD protects against leakage by injecting noise into individual example gradients.
While this result is quite appealing, the computational cost of training large-scale models with DP-SGD is substantially higher than non-private training.
arXiv Detail & Related papers (2022-05-06T01:22:20Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Differentially Private Coordinate Descent for Composite Empirical Risk
Minimization [13.742100810492014]
Machine learning models can leak information about the data used to train them.
Differentially Private (DP) variants of optimization algorithms like Gradient Descent (DP-SGD) have been designed to mitigate this.
We propose a new method for composite Differentially Private Empirical Risk Minimization (DP-ERM): Differentially Private Coordinate Descent (DP-CD)
arXiv Detail & Related papers (2021-10-22T10:22:48Z) - Bypassing the Ambient Dimension: Private SGD with Gradient Subspace
Identification [47.23063195722975]
Differentially private SGD (DP-SGD) is one of the most popular methods for solving differentially private empirical risk minimization (ERM)
Due to its noisy perturbation on each gradient update, the error rate of DP-SGD scales with the ambient dimension $p$, the number of parameters in the model.
We propose Projected DP-SGD that performs noise reduction by projecting the noisy gradients to a low-dimensional subspace.
arXiv Detail & Related papers (2020-07-07T22:31:01Z) - A One-Pass Private Sketch for Most Machine Learning Tasks [48.17461258268463]
Differential privacy (DP) is a compelling privacy definition that explains the privacy-utility tradeoff via formal, provable guarantees.
We propose a private sketch that supports a multitude of machine learning tasks including regression, classification, density estimation, and more.
Our sketch consists of randomized contingency tables that are indexed with locality-sensitive hashing and constructed with an efficient one-pass algorithm.
arXiv Detail & Related papers (2020-06-16T17:47:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.