PReGAN: Answer Oriented Passage Ranking with Weakly Supervised GAN
- URL: http://arxiv.org/abs/2207.01762v1
- Date: Tue, 5 Jul 2022 01:43:35 GMT
- Title: PReGAN: Answer Oriented Passage Ranking with Weakly Supervised GAN
- Authors: Pan Du, Jian-Yun Nie, Yutao Zhu, Hao Jiang, Lixin Zou, Xiaohui Yan
- Abstract summary: We propose an approach called tttPReGAN for Passage Reranking based on Generative Adversarial Neural networks.
The goal is to force the generator to rank higher a passage that is topically relevant and contains an answer.
- Score: 34.96355889356033
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Beyond topical relevance, passage ranking for open-domain factoid question
answering also requires a passage to contain an answer (answerability). While a
few recent studies have incorporated some reading capability into a ranker to
account for answerability, the ranker is still hindered by the noisy nature of
the training data typically available in this area, which considers any passage
containing an answer entity as a positive sample. However, the answer entity in
a passage is not necessarily mentioned in relation with the given question. To
address the problem, we propose an approach called \ttt{PReGAN} for Passage
Reranking based on Generative Adversarial Neural networks, which incorporates a
discriminator on answerability, in addition to a discriminator on topical
relevance. The goal is to force the generator to rank higher a passage that is
topically relevant and contains an answer. Experiments on five public datasets
show that \ttt{PReGAN} can better rank appropriate passages, which in turn,
boosts the effectiveness of QA systems, and outperforms the existing approaches
without using external data.
Related papers
- QPaug: Question and Passage Augmentation for Open-Domain Question Answering of LLMs [5.09189220106765]
We propose a simple yet efficient method called question and passage augmentation (QPaug) via large language models (LLMs) for open-domain question-answering tasks.
Experimental results show that QPaug outperforms the previous state-of-the-art and achieves significant performance gain over existing RAG methods.
arXiv Detail & Related papers (2024-06-20T12:59:27Z) - Passage-specific Prompt Tuning for Passage Reranking in Question Answering with Large Language Models [11.716595438057997]
We propose passage-specific prompt tuning for reranking in open-domain question answering (PSPT)
PSPT is a parameter-efficient method that fine-tunes learnable passage-specific soft prompts.
We conducted extensive experiments utilizing the Llama-2-chat-7B model across three publicly available open-domain question answering datasets.
arXiv Detail & Related papers (2024-05-31T07:43:42Z) - Towards Reliable and Factual Response Generation: Detecting Unanswerable
Questions in Information-Seeking Conversations [16.99952884041096]
Generative AI models face the challenge of hallucinations that can undermine users' trust in such systems.
We approach the problem of conversational information seeking as a two-step process, where relevant passages in a corpus are identified first and then summarized into a final system response.
Specifically, our proposed method employs a sentence-level classifier to detect if the answer is present, then aggregates these predictions on the passage level, and eventually across the top-ranked passages to arrive at a final answerability estimate.
arXiv Detail & Related papers (2024-01-21T10:15:36Z) - Evidentiality-aware Retrieval for Overcoming Abstractiveness in
Open-Domain Question Answering [29.00167886463793]
We propose Evidentiality-Aware Passage Retrieval (EADPR) to learn to discriminate evidence passages from distractors.
We conduct extensive experiments to validate the effectiveness of our proposed method on multiple abstractive ODQA tasks.
arXiv Detail & Related papers (2023-04-06T12:42:37Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
We propose a framework with Multifaceted Improvements for Conversational open-domain Question Answering (MICQA)
Firstly, the proposed KL-divergence based regularization is able to lead to a better question understanding for retrieval and answer reading.
Second, the added post-ranker module can push more relevant passages to the top placements and be selected for reader with a two-aspect constrains.
Third, the well designed curriculum learning strategy effectively narrows the gap between the golden passage settings of training and inference, and encourages the reader to find true answer without the golden passage assistance.
arXiv Detail & Related papers (2022-04-01T07:54:27Z) - Double Retrieval and Ranking for Accurate Question Answering [120.69820139008138]
We show that an answer verification step introduced in Transformer-based answer selection models can significantly improve the state of the art in Question Answering.
The results on three well-known datasets for AS2 show consistent and significant improvement of the state of the art.
arXiv Detail & Related papers (2022-01-16T06:20:07Z) - AnswerSumm: A Manually-Curated Dataset and Pipeline for Answer
Summarization [73.91543616777064]
Community Question Answering (CQA) fora such as Stack Overflow and Yahoo! Answers contain a rich resource of answers to a wide range of community-based questions.
One goal of answer summarization is to produce a summary that reflects the range of answer perspectives.
This work introduces a novel dataset of 4,631 CQA threads for answer summarization, curated by professional linguists.
arXiv Detail & Related papers (2021-11-11T21:48:02Z) - A Graph-guided Multi-round Retrieval Method for Conversational
Open-domain Question Answering [52.041815783025186]
We propose a novel graph-guided retrieval method to model the relations among answers across conversation turns.
We also propose to incorporate the multi-round relevance feedback technique to explore the impact of the retrieval context on current question understanding.
arXiv Detail & Related papers (2021-04-17T04:39:41Z) - Visual Question Answering with Prior Class Semantics [50.845003775809836]
We show how to exploit additional information pertaining to the semantics of candidate answers.
We extend the answer prediction process with a regression objective in a semantic space.
Our method brings improvements in consistency and accuracy over a range of question types.
arXiv Detail & Related papers (2020-05-04T02:46:31Z) - Conversational Question Answering over Passages by Leveraging Word
Proximity Networks [33.59664244897881]
CROWN is an unsupervised yet effective system for conversational QA with passage responses.
It supports several modes of context propagation over multiple turns.
CROWN was evaluated on TREC CAsT data, where it achieved above-median performance in a pool of neural methods.
arXiv Detail & Related papers (2020-04-27T19:30:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.