Detecting and Recovering Sequential DeepFake Manipulation
- URL: http://arxiv.org/abs/2207.02204v1
- Date: Tue, 5 Jul 2022 17:59:33 GMT
- Title: Detecting and Recovering Sequential DeepFake Manipulation
- Authors: Rui Shao, Tianxing Wu, Ziwei Liu
- Abstract summary: We propose a novel research problem called Detecting Sequential DeepFake Manipulation (Seq-DeepFake)
Unlike the existing deepfake detection task only demanding a binary label prediction, Seq-DeepFake requires correctly predicting a sequential vector of facial manipulation operations.
We build a comprehensive benchmark and set up rigorous evaluation protocols and metrics for this new research problem.
- Score: 32.34908534582532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since photorealistic faces can be readily generated by facial manipulation
technologies nowadays, potential malicious abuse of these technologies has
drawn great concerns. Numerous deepfake detection methods are thus proposed.
However, existing methods only focus on detecting one-step facial manipulation.
As the emergence of easy-accessible facial editing applications, people can
easily manipulate facial components using multi-step operations in a sequential
manner. This new threat requires us to detect a sequence of facial
manipulations, which is vital for both detecting deepfake media and recovering
original faces afterwards. Motivated by this observation, we emphasize the need
and propose a novel research problem called Detecting Sequential DeepFake
Manipulation (Seq-DeepFake). Unlike the existing deepfake detection task only
demanding a binary label prediction, detecting Seq-DeepFake manipulation
requires correctly predicting a sequential vector of facial manipulation
operations. To support a large-scale investigation, we construct the first
Seq-DeepFake dataset, where face images are manipulated sequentially with
corresponding annotations of sequential facial manipulation vectors. Based on
this new dataset, we cast detecting Seq-DeepFake manipulation as a specific
image-to-sequence (e.g. image captioning) task and propose a concise yet
effective Seq-DeepFake Transformer (SeqFakeFormer). Moreover, we build a
comprehensive benchmark and set up rigorous evaluation protocols and metrics
for this new research problem. Extensive experiments demonstrate the
effectiveness of SeqFakeFormer. Several valuable observations are also revealed
to facilitate future research in broader deepfake detection problems.
Related papers
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
Deepfakes of victims or public figures can be used by fraudsters for blackmailing, extorsion and financial fraud.
In our research we propose to use geometric-fakeness features (GFF) that characterize a dynamic degree of a face presence in a video.
We employ our approach to analyze videos with multiple faces that are simultaneously present in a video.
arXiv Detail & Related papers (2024-10-10T13:10:34Z) - Semantics-Oriented Multitask Learning for DeepFake Detection: A Joint Embedding Approach [77.65459419417533]
We propose an automatic dataset expansion technique to support semantics-oriented DeepFake detection tasks.
We also resort to joint embedding of face images and their corresponding labels for prediction.
Our method improves the generalizability of DeepFake detection and renders some degree of model interpretation by providing human-understandable explanations.
arXiv Detail & Related papers (2024-08-29T07:11:50Z) - Media Forensics and Deepfake Systematic Survey [0.0]
Deepfake is a generative deep learning algorithm that creates or changes facial features in a very realistic way.
It can be used to make movies look better as well as to spread false information by imitating famous people.
arXiv Detail & Related papers (2024-06-19T07:33:33Z) - Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method [77.65459419417533]
We put face forgery in a semantic context and define that computational methods that alter semantic face attributes are sources of face forgery.
We construct a large face forgery image dataset, where each image is associated with a set of labels organized in a hierarchical graph.
We propose a semantics-oriented face forgery detection method that captures label relations and prioritizes the primary task.
arXiv Detail & Related papers (2024-05-14T10:24:19Z) - Robust Sequential DeepFake Detection [46.493498963150294]
We propose a novel research problem called Detecting Sequential DeepFake Manipulation (Seq-DeepFake)
Unlike the existing deepfake detection task only demanding a binary label prediction, Seq-DeepFake requires correctly predicting a sequential vector of facial manipulation operations.
arXiv Detail & Related papers (2023-09-26T15:01:43Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
Sequential deepfake detection aims to identify forged facial regions with the correct sequence for recovery.
The recovery of forged images requires knowledge of the manipulation model to implement inverse transformations.
We propose Multi-Collaboration and Multi-Supervision Network (MMNet) that handles various spatial scales and sequential permutations in forged face images.
arXiv Detail & Related papers (2023-07-06T02:32:08Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
Deepfake techniques in real-world scenarios require stronger generalization abilities of face forgery detectors.
Inspired by transfer learning, neural networks pre-trained on other large-scale face-related tasks may provide useful features for deepfake detection.
In this paper, we propose a self-supervised transformer based audio-visual contrastive learning method.
arXiv Detail & Related papers (2022-03-02T17:44:40Z) - Deepfake Detection for Facial Images with Facemasks [17.238556058316412]
We thoroughly evaluate the performance of state-of-the-art deepfake detection models on the deepfakes withthe facemask.
We propose two approaches to enhance themasked deepfakes detection:face-patchandface-crop.
arXiv Detail & Related papers (2022-02-23T09:01:27Z) - Understanding the Security of Deepfake Detection [23.118012417901078]
We study the security of state-of-the-art deepfake detection methods in adversarial settings.
We use two large-scale public deepfakes data sources including FaceForensics++ and Facebook Deepfake Detection Challenge.
Our results uncover multiple security limitations of the deepfake detection methods in adversarial settings.
arXiv Detail & Related papers (2021-07-05T14:18:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.