Classical Cost of Transmitting a Qubit
- URL: http://arxiv.org/abs/2207.02244v2
- Date: Tue, 28 Mar 2023 17:18:22 GMT
- Title: Classical Cost of Transmitting a Qubit
- Authors: Martin J. Renner, Armin Tavakoli and Marco T\'ulio Quintino
- Abstract summary: We show that the statistics obtained in any quantum protocol can be simulated by the purely classical means of shared randomness and two bits of communication.
In particular, two bits of communication are enough to simulate all quantum correlations associated to arbitrary local POVMs applied to any entangled two-qubit state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider general prepare-and-measure scenarios in which Alice can transmit
qubit states to Bob, who can perform general measurements in the form of
positive operator-valued measures (POVMs). We show that the statistics obtained
in any such quantum protocol can be simulated by the purely classical means of
shared randomness and two bits of communication. Furthermore, we prove that two
bits of communication is the minimal cost of a perfect classical simulation. In
addition, we apply our methods to Bell scenarios, which extends the well-known
Toner and Bacon protocol. In particular, two bits of communication are enough
to simulate all quantum correlations associated to arbitrary local POVMs
applied to any entangled two-qubit state.
Related papers
- Performance of entanglement purification including maximally entangled mixed states [0.0]
Entanglement between distant quantum systems is a critical resource for implementing quantum communication.
We propose an entanglement purification protocol based on two entangling two-qubit operations.
Two variants of the core protocol are introduced and shown to be more practical in certain scenarios.
arXiv Detail & Related papers (2024-02-06T18:34:34Z) - Optimal unilocal virtual quantum broadcasting [5.80377843790023]
We introduce protocols that can be approximated using physical operations with minimal cost.
We formalize the simulation cost of a virtual quantum broadcasting protocol into a semidefinite programming problem.
arXiv Detail & Related papers (2023-10-23T17:56:02Z) - Neural Network Approach to the Simulation of Entangled States with One
Bit of Communication [0.0]
Bell's theorem states that Local Hidden Variables cannot fully explain the statistics of measurements on some entangled quantum states.
It is natural to ask how much supplementary classical communication would be needed to simulate them.
We present evidence that all projective measurements on partially entangled pure two-qubit states require only one bit of communication.
arXiv Detail & Related papers (2023-05-31T15:19:00Z) - Entanglement-assisted quantum communication with simple measurements [0.0]
Dense coding is the seminal example of how entanglement can boost qubit communication.
We show that measurements enable strong and sometimes even optimal entanglement-assisted qubit communication protocols.
Our results reveal that there are scenarios in which the power of entanglement in enhancing quantum communication can be harvested in simple and scalable optical experiments.
arXiv Detail & Related papers (2022-05-19T14:47:38Z) - Adaptive advantage in entanglement-assisted communications [0.0]
Entanglement-assisted classical communication protocols usually consist of two successive rounds.
We show that adaptive protocols improve the success probability in Random Access Codes.
We briefly discuss extension of these ideas to scenarios involving quantum communication.
arXiv Detail & Related papers (2022-03-10T13:54:02Z) - Quantum cryptography with classical communication: parallel remote state
preparation for copy-protection, verification, and more [125.99533416395765]
Many cryptographic primitives are two-party protocols, where one party, Bob, has full quantum computational capabilities, and the other party, Alice, is only required to send random BB84 states to Bob.
We show how such protocols can generically be converted to ones where Alice is fully classical, assuming that Bob cannot efficiently solve the LWE problem.
This means that all communication between (classical) Alice and (quantum) Bob is classical, yet they can still make use of cryptographic primitives that would be impossible if both parties were classical.
arXiv Detail & Related papers (2022-01-31T18:56:31Z) - Computation-aided classical-quantum multiple access to boost network
communication speeds [61.12008553173672]
We quantify achievable quantum communication rates of codes with computation property for a two-sender cq-MAC.
We show that it achieves the maximum possible communication rate (the single-user capacity), which cannot be achieved with conventional design.
arXiv Detail & Related papers (2021-05-30T11:19:47Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.