GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation
- URL: http://arxiv.org/abs/2207.02466v5
- Date: Mon, 8 Jul 2024 06:03:19 GMT
- Title: GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation
- Authors: Yifan Zhang, Qijian Zhang, Zhiyu Zhu, Junhui Hou, Yixuan Yuan,
- Abstract summary: In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
- Score: 70.75100533512021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inherent ambiguity in ground-truth annotations of 3D bounding boxes, caused by occlusions, signal missing, or manual annotation errors, can confuse deep 3D object detectors during training, thus deteriorating detection accuracy. However, existing methods overlook such issues to some extent and treat the labels as deterministic. In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects. Then, we propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables. The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors to build probabilistic detectors and supervise the learning of the localization uncertainty. Besides, we propose an uncertainty-aware quality estimator architecture in probabilistic detectors to guide the training of the IoU-branch with predicted localization uncertainty. We incorporate the proposed methods into various popular base 3D detectors and demonstrate significant and consistent performance gains on both KITTI and Waymo benchmark datasets. Especially, the proposed GLENet-VR outperforms all published LiDAR-based approaches by a large margin and achieves the top rank among single-modal methods on the challenging KITTI test set. The source code and pre-trained models are publicly available at \url{https://github.com/Eaphan/GLENet}.
Related papers
- Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
We present a novel Dual-Perspective Knowledge Enrichment approach named DPKE for semi-supervised 3D object detection.
Our DPKE enriches the knowledge of limited training data, particularly unlabeled data, from two perspectives: data-perspective and feature-perspective.
arXiv Detail & Related papers (2024-01-10T08:56:07Z) - LS-VOS: Identifying Outliers in 3D Object Detections Using Latent Space
Virtual Outlier Synthesis [10.920640666237833]
LiDAR-based 3D object detectors have achieved unprecedented speed and accuracy in autonomous driving applications.
They are often biased toward high-confidence predictions or return detections where no real object is present.
We propose LS-VOS, a framework for identifying outliers in 3D object detections.
arXiv Detail & Related papers (2023-10-02T07:44:26Z) - MEDL-U: Uncertainty-aware 3D Automatic Annotation based on Evidential
Deep Learning [13.59039985176011]
We introduce an Evidential Deep Learning (EDL) based uncertainty estimation framework for 3D object detection.
EDL-U generates pseudo labels and quantifies the associated uncertainties.
Probability detectors trained using MEDL-U surpass deterministic detectors trained using outputs from previous 3D annotators on the KITTI val set for all difficulty levels.
arXiv Detail & Related papers (2023-09-18T09:14:03Z) - Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection.
Existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting.
We propose a novel ReDB framework tailored for learning to detect all classes at once.
arXiv Detail & Related papers (2023-07-16T04:34:11Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
We present a self-training method, named ST3D++, with a holistic pseudo label denoising pipeline for unsupervised domain adaptation on 3D object detection.
We equip the pseudo label generation process with a hybrid quality-aware triplet memory to improve the quality and stability of generated pseudo labels.
In the model training stage, we propose a source data assisted training strategy and a curriculum data augmentation policy.
arXiv Detail & Related papers (2021-08-15T07:49:06Z) - Labels Are Not Perfect: Inferring Spatial Uncertainty in Object
Detection [26.008419879970365]
In this work, we infer the uncertainty in bounding box labels from LiDAR point clouds based on a generative model.
Comprehensive experiments show that the proposed model reflects complex environmental noises in LiDAR perception and the label quality.
We propose Jaccard IoU as a new evaluation metric that extends IoU by incorporating label uncertainty.
arXiv Detail & Related papers (2020-12-18T09:11:44Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.