Distributional neural networks for electricity price forecasting
- URL: http://arxiv.org/abs/2207.02832v1
- Date: Wed, 6 Jul 2022 17:42:52 GMT
- Title: Distributional neural networks for electricity price forecasting
- Authors: Grzegorz Marcjasz, Micha{\l} Narajewski, Rafa{\l} Weron and Florian
Ziel
- Abstract summary: We present a novel approach to probabilistic electricity price forecasting (EPF)
The novel network structure for EPF is based on a regularized distributional multilayer perceptron (DMLP)
Using the framework, the neural network's output is defined to be a distribution, either normal or potentially skewed and heavy-tailed Johnson's SU (JSU)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to probabilistic electricity price forecasting
(EPF) which utilizes distributional artificial neural networks. The novel
network structure for EPF is based on a regularized distributional multilayer
perceptron (DMLP) which contains a probability layer. Using the TensorFlow
Probability framework, the neural network's output is defined to be a
distribution, either normal or potentially skewed and heavy-tailed Johnson's SU
(JSU). The method is compared against state-of-the-art benchmarks in a
forecasting study. The study comprises forecasting involving day-ahead
electricity prices in the German market. The results show evidence of the
importance of higher moments when modeling electricity prices.
Related papers
- On-line conformalized neural networks ensembles for probabilistic forecasting of day-ahead electricity prices [41.94295877935867]
We propose a novel approach to PEPF, extending the state of the art neural networks ensembles based methods through conformal inference based techniques.
Experiments have been conducted on multiple market regions, achieving day-ahead forecasts with improved hourly coverage and stable probabilistic scores.
arXiv Detail & Related papers (2024-04-03T13:22:47Z) - Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression [0.0]
We examine three postprocessing methods for converting point forecasts of day-ahead electricity prices into probabilistic ones.
We find that while the latter demonstrates the most varied behavior, it contributes the most to the ensemble of the predictive distributions.
Remarkably, the performance of the combination is superior to that of state-of-the-art Distributional Deep Neural Networks over two 4.5-year test periods from the German and Spanish power markets.
arXiv Detail & Related papers (2024-04-02T19:50:36Z) - Probabilistic Forecasting of Real-Time Electricity Market Signals via Interpretable Generative AI [41.99446024585741]
We present WIAE-GPF, a Weak Innovation AutoEncoder-based Generative Probabilistic Forecasting architecture.
A novel learning algorithm with structural convergence guarantees is proposed, ensuring that the generated forecast samples match the ground truth conditional probability distribution.
arXiv Detail & Related papers (2024-03-09T00:41:30Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
We propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors.
We propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection.
arXiv Detail & Related papers (2021-05-18T15:51:24Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Deep Distributional Time Series Models and the Probabilistic Forecasting
of Intraday Electricity Prices [0.0]
We propose two approaches to constructing deep time series probabilistic models.
The first is where the output layer of the ESN has disturbances and a shrinkage prior for additional regularization.
The second approach employs the implicit copula of an ESN with Gaussian disturbances, which is a deep copula process on the feature space.
arXiv Detail & Related papers (2020-10-05T08:02:29Z) - N-BEATS neural network for mid-term electricity load forecasting [8.430502131775722]
We show that our proposed deep neural network modeling approach is effective at solving the mid-term electricity load forecasting problem.
It is simple to implement and train, it does not require signal preprocessing, and it is equipped with a forecast bias reduction mechanism.
The empirical study shows that proposed neural network clearly outperforms all competitors in terms of both accuracy and forecast bias.
arXiv Detail & Related papers (2020-09-24T21:48:08Z) - Neural Networks and Value at Risk [59.85784504799224]
We perform Monte-Carlo simulations of asset returns for Value at Risk threshold estimation.
Using equity markets and long term bonds as test assets, we investigate neural networks.
We find our networks when fed with substantially less data to perform significantly worse.
arXiv Detail & Related papers (2020-05-04T17:41:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.