The Power of Transfer Learning in Agricultural Applications: AgriNet
- URL: http://arxiv.org/abs/2207.03881v1
- Date: Fri, 8 Jul 2022 13:15:16 GMT
- Title: The Power of Transfer Learning in Agricultural Applications: AgriNet
- Authors: Zahraa Al Sahili and Mariette Awad
- Abstract summary: We propose AgriNet dataset, a collection of 160k agricultural images from more than 19 geographical locations.
We also introduce AgriNet models, a set of pretrained models on five ImageNet architectures.
All proposed models were found to accurately classify the 423 classes of plant species, diseases, pests, and weeds with a minimum accuracy of 87%.
- Score: 1.9087335681007478
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advances in deep learning and transfer learning have paved the way for
various automation classification tasks in agriculture, including plant
diseases, pests, weeds, and plant species detection. However, agriculture
automation still faces various challenges, such as the limited size of datasets
and the absence of plant-domain-specific pretrained models. Domain specific
pretrained models have shown state of art performance in various computer
vision tasks including face recognition and medical imaging diagnosis. In this
paper, we propose AgriNet dataset, a collection of 160k agricultural images
from more than 19 geographical locations, several images captioning devices,
and more than 423 classes of plant species and diseases. We also introduce
AgriNet models, a set of pretrained models on five ImageNet architectures:
VGG16, VGG19, Inception-v3, InceptionResNet-v2, and Xception. AgriNet-VGG19
achieved the highest classification accuracy of 94 % and the highest F1-score
of 92%. Additionally, all proposed models were found to accurately classify the
423 classes of plant species, diseases, pests, and weeds with a minimum
accuracy of 87% for the Inception-v3 model.Finally, experiments to evaluate of
superiority of AgriNet models compared to ImageNet models were conducted on two
external datasets: pest and plant diseases dataset from Bangladesh and a plant
diseases dataset from Kashmir.
Related papers
- Self-supervised transformer-based pre-training method with General Plant Infection dataset [3.969851116372513]
This study proposes an advanced network architecture that combines Contrastive Learning and Masked Image Modeling (MIM)
The proposed network architecture demonstrates effectiveness in addressing plant pest and disease recognition tasks, achieving notable detection accuracy.
Our code and dataset will be publicly available to advance research in plant pest and disease recognition.
arXiv Detail & Related papers (2024-07-20T15:48:35Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
Disruptions in the plant's normal state, caused by diseases, often interfere with essential plant activities.
We propose a deep learning-based approach for efficient detection of plant diseases using drone-captured imagery.
arXiv Detail & Related papers (2023-05-22T21:15:12Z) - CWD30: A Comprehensive and Holistic Dataset for Crop Weed Recognition in
Precision Agriculture [1.64709990449384]
We present the CWD30 dataset, a large-scale, diverse, holistic, and hierarchical dataset tailored for crop-weed recognition tasks in precision agriculture.
CWD30 comprises over 219,770 high-resolution images of 20 weed species and 10 crop species, encompassing various growth stages, multiple viewing angles, and environmental conditions.
The dataset's hierarchical taxonomy enables fine-grained classification and facilitates the development of more accurate, robust, and generalizable deep learning models.
arXiv Detail & Related papers (2023-05-17T09:39:01Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Generative Adversarial Networks for Image Augmentation in Agriculture: A
Systematic Review [5.639656362091594]
generative adversarial network (GAN) invented in 2014 in the computer vision community, provides suite of novel approaches that can learn good data representations.
This paper presents an overview of the evolution of GAN architectures followed by a systematic review of their application to agriculture.
arXiv Detail & Related papers (2022-04-10T15:33:05Z) - Weed Recognition using Deep Learning Techniques on Class-imbalanced
Imagery [4.96981595868944]
We have investigated five state-of-the-art deep neural networks and evaluated their performance for weed recognition.
VGG16 performed better than others on small-scale datasets, while ResNet-50 performed better than other deep networks on the large combined dataset.
arXiv Detail & Related papers (2021-12-15T01:00:05Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.