High Performance Simulation for Scalable Multi-Agent Reinforcement
Learning
- URL: http://arxiv.org/abs/2207.03945v1
- Date: Fri, 8 Jul 2022 14:54:06 GMT
- Title: High Performance Simulation for Scalable Multi-Agent Reinforcement
Learning
- Authors: Jordan Langham-Lopez, Sebastian M. Schmon, Patrick Cannon
- Abstract summary: We demonstrate the use of Vogue, a high performance agent based model (ABM) framework.
Vogue serves as a multi-agent training environment, supporting thousands to tens of thousands of interacting agents.
We show that these environments can train shared RL policies on time-scales of minutes and hours.
- Score: 1.675857332621569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent reinforcement learning experiments and open-source training
environments are typically limited in scale, supporting tens or sometimes up to
hundreds of interacting agents. In this paper we demonstrate the use of Vogue,
a high performance agent based model (ABM) framework. Vogue serves as a
multi-agent training environment, supporting thousands to tens of thousands of
interacting agents while maintaining high training throughput by running both
the environment and reinforcement learning (RL) agents on the GPU. High
performance multi-agent environments at this scale have the potential to enable
the learning of robust and flexible policies for use in ABMs and simulations of
complex systems. We demonstrate training performance with two newly developed,
large scale multi-agent training environments. Moreover, we show that these
environments can train shared RL policies on time-scales of minutes and hours.
Related papers
- How to Train a Leader: Hierarchical Reasoning in Multi-Agent LLMs [16.853362180877593]
We introduce a hierarchical multi-agent framework that trains only a single leader LLM to coordinate a team of untrained peer agents.<n>Our results highlight the effectiveness and efficiency of training a single, flexible leader for collaborative reasoning in multi-agent LLM systems.
arXiv Detail & Related papers (2025-07-11T18:34:07Z) - ActionStudio: A Lightweight Framework for Data and Training of Large Action Models [88.90834854360641]
ActionStudio is a lightweight and scalable data and training framework designed for large action models.<n>Our trained models yield top performances across public and realistic agent benchmarks.<n>We open-source the ActionStudio framework and release actionstudio-98k, a curated dataset of 98k high-quality trajectories.
arXiv Detail & Related papers (2025-03-28T17:58:33Z) - LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
Large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence.
We present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs.
In LMAgent, besides chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce.
arXiv Detail & Related papers (2024-12-12T12:47:09Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
We develop new features and components for AgentScope, a user-friendly multi-agent platform.
We propose an actor-based distributed mechanism towards great scalability and high efficiency.
We also provide a web-based interface for conveniently monitoring and managing a large number of agents.
arXiv Detail & Related papers (2024-07-25T05:50:46Z) - Contrastive learning-based agent modeling for deep reinforcement
learning [31.293496061727932]
Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems.
We devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution.
CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode.
arXiv Detail & Related papers (2023-12-30T03:44:12Z) - DARLEI: Deep Accelerated Reinforcement Learning with Evolutionary
Intelligence [77.78795329701367]
We present DARLEI, a framework that combines evolutionary algorithms with parallelized reinforcement learning.
We characterize DARLEI's performance under various conditions, revealing factors impacting diversity of evolved morphologies.
We hope to extend DARLEI in future work to include interactions between diverse morphologies in richer environments.
arXiv Detail & Related papers (2023-12-08T16:51:10Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Adaptive action supervision in reinforcement learning from real-world
multi-agent demonstrations [10.174009792409928]
We propose a method for adaptive action supervision in RL from real-world demonstrations in multi-agent scenarios.
In the experiments, using chase-and-escape and football tasks with the different dynamics between the unknown source and target environments, we show that our approach achieved a balance between the generalization and the generalization ability compared with the baselines.
arXiv Detail & Related papers (2023-05-22T13:33:37Z) - Efficient Distributed Framework for Collaborative Multi-Agent
Reinforcement Learning [17.57163419315147]
Multi-agent reinforcement learning for incomplete information environments has attracted extensive attention from researchers.
There are still some problems in multi-agent reinforcement learning, such as unstable model iteration and low training efficiency.
In this paper, we design an distributed MARL framework based on the actor-work-learner architecture.
arXiv Detail & Related papers (2022-05-11T03:12:49Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
We make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks.
Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy.
The proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable.
arXiv Detail & Related papers (2021-01-20T07:24:24Z) - SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
Autonomous Driving [96.50297622371457]
Multi-agent interaction is a fundamental aspect of autonomous driving in the real world.
Despite more than a decade of research and development, the problem of how to interact with diverse road users in diverse scenarios remains largely unsolved.
We develop a dedicated simulation platform called SMARTS that generates diverse and competent driving interactions.
arXiv Detail & Related papers (2020-10-19T18:26:10Z) - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement
Learning in Mixed Dynamic Environments [30.407700996710023]
This paper proposes a decentralized partially observable multi-agent path planning with evolutionary reinforcement learning (MAPPER) method.
We decompose the long-range navigation task into many easier sub-tasks under the guidance of a global planner.
Our approach models dynamic obstacles' behavior with an image-based representation and trains a policy in mixed dynamic environments without homogeneity assumption.
arXiv Detail & Related papers (2020-07-30T20:14:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.