Towards Multimodal Vision-Language Models Generating Non-Generic Text
- URL: http://arxiv.org/abs/2207.04174v1
- Date: Sat, 9 Jul 2022 01:56:35 GMT
- Title: Towards Multimodal Vision-Language Models Generating Non-Generic Text
- Authors: Wes Robbins, Zanyar Zohourianshahzadi, and Jugal Kalita
- Abstract summary: Vision-language models can assess visual context in an image and generate descriptive text.
Recent work has used optical character recognition to supplement visual information with text extracted from an image.
In this work, we contend that vision-language models can benefit from additional information that can be extracted from an image, but are not used by current models.
- Score: 2.102846336724103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language models can assess visual context in an image and generate
descriptive text. While the generated text may be accurate and syntactically
correct, it is often overly general. To address this, recent work has used
optical character recognition to supplement visual information with text
extracted from an image. In this work, we contend that vision-language models
can benefit from additional information that can be extracted from an image,
but are not used by current models. We modify previous multimodal frameworks to
accept relevant information from any number of auxiliary classifiers. In
particular, we focus on person names as an additional set of tokens and create
a novel image-caption dataset to facilitate captioning with person names. The
dataset, Politicians and Athletes in Captions (PAC), consists of captioned
images of well-known people in context. By fine-tuning pretrained models with
this dataset, we demonstrate a model that can naturally integrate facial
recognition tokens into generated text by training on limited data. For the PAC
dataset, we provide a discussion on collection and baseline benchmark scores.
Related papers
- Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process.
Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities.
We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions.
arXiv Detail & Related papers (2024-05-21T18:02:07Z) - User-Aware Prefix-Tuning is a Good Learner for Personalized Image
Captioning [35.211749514733846]
Traditional image captioning methods often overlook the preferences and characteristics of users.
Most existing methods emphasize the user context fusion process by memory networks or transformers.
We propose a novel personalized image captioning framework that leverages user context to consider personality factors.
arXiv Detail & Related papers (2023-12-08T02:08:00Z) - COSA: Concatenated Sample Pretrained Vision-Language Foundation Model [78.32081709802873]
Most vision-language foundation models employ image-text datasets for pretraining.
We propose COSA, a COncatenated SAmple pretrained vision-language foundation model.
We achieve this by sequentially concatenating multiple image-text pairs as inputs for pretraining.
This transformation effectively converts existing image-text corpora into a pseudo long-form video-paragraph corpus.
arXiv Detail & Related papers (2023-06-15T12:29:42Z) - CapText: Large Language Model-based Caption Generation From Image
Context and Description [0.0]
We propose and evaluate a new approach to generate captions from textual descriptions and context alone.
Our approach outperforms current state-of-the-art image-text alignment models like OSCAR-VinVL on this task on the CIDEr metric.
arXiv Detail & Related papers (2023-06-01T02:40:44Z) - FuseCap: Leveraging Large Language Models for Enriched Fused Image
Captions [11.274127953112574]
We propose an automated approach to augmenting existing captions with visual details using "frozen" vision experts.
Our proposed method, FuseCap, fuses the outputs of such vision experts with the original captions using a large language model.
We release this large-scale dataset of enriched image-caption pairs for the community.
arXiv Detail & Related papers (2023-05-28T13:16:03Z) - Language Quantized AutoEncoders: Towards Unsupervised Text-Image
Alignment [81.73717488887938]
Language-Quantized AutoEncoder (LQAE) learns to align text-image data in an unsupervised manner by leveraging pretrained language models.
LQAE learns to represent similar images with similar clusters of text tokens, thereby aligning these two modalities without the use of aligned text-image pairs.
This enables few-shot image classification with large language models (e.g., GPT-3) as well as linear classification of images based on BERT text features.
arXiv Detail & Related papers (2023-02-02T06:38:44Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [72.60554897161948]
Recent text-to-image matching models apply contrastive learning to large corpora of uncurated pairs of images and sentences.
In this work, we repurpose such models to generate a descriptive text given an image at inference time.
The resulting captions are much less restrictive than those obtained by supervised captioning methods.
arXiv Detail & Related papers (2021-11-29T11:01:49Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.