Fuzzy Clustering by Hyperbolic Smoothing
- URL: http://arxiv.org/abs/2207.04261v1
- Date: Sat, 9 Jul 2022 12:40:46 GMT
- Title: Fuzzy Clustering by Hyperbolic Smoothing
- Authors: David Masis, Esteban Segura, Javier Trejos, Adilson Xavier
- Abstract summary: We propose a novel method for building fuzzy clusters of large data sets, using a smoothing numerical approach.
The smoothing allows a conversion from a strongly non-differentiable problem into differentiable subproblems of optimization without constraints of low dimension.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a novel method for building fuzzy clusters of large data sets,
using a smoothing numerical approach. The usual sum-of-squares criterion is
relaxed so the search for good fuzzy partitions is made on a continuous space,
rather than a combinatorial space as in classical methods \cite{Hartigan}. The
smoothing allows a conversion from a strongly non-differentiable problem into
differentiable subproblems of optimization without constraints of low
dimension, by using a differentiable function of infinite class. For the
implementation of the algorithm we used the statistical software $R$ and the
results obtained were compared to the traditional fuzzy $C$--means method,
proposed by Bezdek.
Related papers
- Stochastic First-Order Methods with Non-smooth and Non-Euclidean Proximal Terms for Nonconvex High-Dimensional Stochastic Optimization [2.0657831823662574]
When the non problem is by which the non problem is by whichity, the sample of first-order methods may depend linearly on the problem dimension, is for undesirable problems.
Our algorithms allow for the estimate of complexity using the distance of.
mathO (log d) / EuM4.
We prove that DISFOM can sharpen variance employing $mathO (log d) / EuM4.
arXiv Detail & Related papers (2024-06-27T18:38:42Z) - High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise [96.80184504268593]
gradient, clipping is one of the key algorithmic ingredients to derive good high-probability guarantees.
Clipping can spoil the convergence of the popular methods for composite and distributed optimization.
arXiv Detail & Related papers (2023-10-03T07:49:17Z) - Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features [65.64276393443346]
The Frank-Wolfe (FW) method is a popular approach for solving optimization problems with structured constraints.
We present two new variants of the algorithms for minimization of the finite-sum gradient.
arXiv Detail & Related papers (2023-04-23T20:05:09Z) - Multistage Stochastic Optimization via Kernels [3.7565501074323224]
We develop a non-parametric, data-driven, tractable approach for solving multistage optimization problems.
We show that the proposed method produces decision rules with near-optimal average performance.
arXiv Detail & Related papers (2023-03-11T23:19:32Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates [0.6083861980670925]
This paper proposes a novel surrogate-based global optimization algorithm to solve linearly constrained mixed-variable problems.
We assume the objective function is black-box and expensive-to-evaluate, while the linear constraints are quantifiable unrelaxable a priori known.
We introduce two types of exploration functions to efficiently search the feasible domain via mixed-integer linear programming solvers.
arXiv Detail & Related papers (2023-02-09T15:04:35Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Random Manifold Sampling and Joint Sparse Regularization for Multi-label
Feature Selection [0.0]
The model proposed in this paper can obtain the most relevant few features by solving the joint constrained optimization problems of $ell_2,1$ and $ell_F$ regularization.
Comparative experiments on real-world data sets show that the proposed method outperforms other methods.
arXiv Detail & Related papers (2022-04-13T15:06:12Z) - On Stochastic Moving-Average Estimators for Non-Convex Optimization [105.22760323075008]
In this paper, we demonstrate the power of a widely used estimator based on moving average (SEMA) problems.
For all these-the-art results, we also present the results for all these-the-art problems.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization [30.980431848476925]
We propose an algorithm for constrained finite smooth-sum minimization with a generalized linear prediction/structure.
The proposed method is simple to implement, does not require step-size tuning, and has a constant per-iteration independent of the dataset size.
We provide an implementation of all considered methods in an open-source package.
arXiv Detail & Related papers (2020-02-27T00:47:21Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.