Multi-Model Federated Learning with Provable Guarantees
- URL: http://arxiv.org/abs/2207.04330v3
- Date: Wed, 13 Jul 2022 08:09:13 GMT
- Title: Multi-Model Federated Learning with Provable Guarantees
- Authors: Neelkamal Bhuyan, Sharayu Moharir, Gauri Joshi
- Abstract summary: Federated Learning (FL) is a variant of distributed learning where devices collaborate to learn a model without sharing their data with the central server or each other.
We refer to the process of multiple independent clients simultaneously in a federated setting using a common pool of clients as a multi-model edge FL.
- Score: 19.470024548995717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a variant of distributed learning where edge
devices collaborate to learn a model without sharing their data with the
central server or each other. We refer to the process of training multiple
independent models simultaneously in a federated setting using a common pool of
clients as multi-model FL. In this work, we propose two variants of the popular
FedAvg algorithm for multi-model FL, with provable convergence guarantees. We
further show that for the same amount of computation, multi-model FL can have
better performance than training each model separately. We supplement our
theoretical results with experiments in strongly convex, convex, and non-convex
settings.
Related papers
- FedCross: Towards Accurate Federated Learning via Multi-Model Cross-Aggregation [16.019513233021435]
Federated Learning (FL) has attracted increasing attention to deal with data silo problems without compromising user privacy.
We present an efficient FL framework named FedCross, which uses a novel multi-to-multi FL training scheme based on our proposed multi-model cross-aggregation approach.
We show that FedCross can significantly improve FL accuracy within both IID and non-IID scenarios without causing additional communication overhead.
arXiv Detail & Related papers (2022-10-15T13:12:11Z) - Test-Time Robust Personalization for Federated Learning [5.553167334488855]
Federated Learning (FL) is a machine learning paradigm where many clients collaboratively learn a shared global model with decentralized training data.
Personalized FL additionally adapts the global model to different clients, achieving promising results on consistent local training and test distributions.
We propose Federated Test-time Head Ensemble plus tuning(FedTHE+), which personalizes FL models with robustness to various test-time distribution shifts.
arXiv Detail & Related papers (2022-05-22T20:08:14Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - Multi-Center Federated Learning [62.32725938999433]
Federated learning (FL) can protect data privacy in distributed learning.
It merely collects local gradients from users without access to their data.
We propose a novel multi-center aggregation mechanism.
arXiv Detail & Related papers (2021-08-19T12:20:31Z) - Hybrid Federated Learning: Algorithms and Implementation [61.0640216394349]
Federated learning (FL) is a recently proposed distributed machine learning paradigm dealing with distributed and private data sets.
We propose a new model-matching-based problem formulation for hybrid FL.
We then propose an efficient algorithm that can collaboratively train the global and local models to deal with full and partial featured data.
arXiv Detail & Related papers (2020-12-22T23:56:03Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning (FL) is a machine learning setting where many devices collaboratively train a machine learning model.
In most of the current training schemes the central model is refined by averaging the parameters of the server model and the updated parameters from the client side.
We propose ensemble distillation for model fusion, i.e. training the central classifier through unlabeled data on the outputs of the models from the clients.
arXiv Detail & Related papers (2020-06-12T14:49:47Z) - UVeQFed: Universal Vector Quantization for Federated Learning [179.06583469293386]
Federated learning (FL) is an emerging approach to train such learning models without requiring the users to share their possibly private labeled data.
In FL, each user trains its copy of the learning model locally. The server then collects the individual updates and aggregates them into a global model.
We show that combining universal vector quantization methods with FL yields a decentralized training system in which the compression of the trained models induces only a minimum distortion.
arXiv Detail & Related papers (2020-06-05T07:10:22Z) - Federated learning with hierarchical clustering of local updates to
improve training on non-IID data [3.3517146652431378]
We show that learning a single joint model is often not optimal in the presence of certain types of non-iid data.
We present a modification to FL by introducing a hierarchical clustering step (FL+HC)
We show how FL+HC allows model training to converge in fewer communication rounds compared to FL without clustering.
arXiv Detail & Related papers (2020-04-24T15:16:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.