Depthformer : Multiscale Vision Transformer For Monocular Depth
Estimation With Local Global Information Fusion
- URL: http://arxiv.org/abs/2207.04535v2
- Date: Tue, 12 Jul 2022 07:39:10 GMT
- Title: Depthformer : Multiscale Vision Transformer For Monocular Depth
Estimation With Local Global Information Fusion
- Authors: Ashutosh Agarwal and Chetan Arora
- Abstract summary: This paper benchmarks various transformer-based models for the depth estimation task on an indoor NYUV2 dataset and an outdoor KITTI dataset.
We propose a novel attention-based architecture, Depthformer for monocular depth estimation.
Our proposed method improves the state-of-the-art by 3.3%, and 3.3% respectively in terms of Root Mean Squared Error (RMSE)
- Score: 6.491470878214977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attention-based models such as transformers have shown outstanding
performance on dense prediction tasks, such as semantic segmentation, owing to
their capability of capturing long-range dependency in an image. However, the
benefit of transformers for monocular depth prediction has seldom been explored
so far. This paper benchmarks various transformer-based models for the depth
estimation task on an indoor NYUV2 dataset and an outdoor KITTI dataset. We
propose a novel attention-based architecture, Depthformer for monocular depth
estimation that uses multi-head self-attention to produce the multiscale
feature maps, which are effectively combined by our proposed decoder network.
We also propose a Transbins module that divides the depth range into bins whose
center value is estimated adaptively per image. The final depth estimated is a
linear combination of bin centers for each pixel. Transbins module takes
advantage of the global receptive field using the transformer module in the
encoding stage. Experimental results on NYUV2 and KITTI depth estimation
benchmark demonstrate that our proposed method improves the state-of-the-art by
3.3%, and 3.3% respectively in terms of Root Mean Squared Error (RMSE). Code is
available at https://github.com/ashutosh1807/Depthformer.git.
Related papers
- Self-supervised Monocular Depth Estimation with Large Kernel Attention [30.44895226042849]
We propose a self-supervised monocular depth estimation network to get finer details.
Specifically, we propose a decoder based on large kernel attention, which can model long-distance dependencies.
Our method achieves competitive results on the KITTI dataset.
arXiv Detail & Related papers (2024-09-26T14:44:41Z) - NeRF-Det++: Incorporating Semantic Cues and Perspective-aware Depth
Supervision for Indoor Multi-View 3D Detection [72.0098999512727]
NeRF-Det has achieved impressive performance in indoor multi-view 3D detection by utilizing NeRF to enhance representation learning.
We present three corresponding solutions, including semantic enhancement, perspective-aware sampling, and ordinal depth supervision.
The resulting algorithm, NeRF-Det++, has exhibited appealing performance in the ScanNetV2 and AR KITScenes datasets.
arXiv Detail & Related papers (2024-02-22T11:48:06Z) - Self-Supervised Monocular Depth Estimation by Direction-aware Cumulative
Convolution Network [80.19054069988559]
We find that self-supervised monocular depth estimation shows a direction sensitivity and environmental dependency.
We propose a new Direction-aware Cumulative Convolution Network (DaCCN), which improves the depth representation in two aspects.
Experiments show that our method achieves significant improvements on three widely used benchmarks.
arXiv Detail & Related papers (2023-08-10T14:32:18Z) - SwinDepth: Unsupervised Depth Estimation using Monocular Sequences via
Swin Transformer and Densely Cascaded Network [29.798579906253696]
It is challenging to acquire dense ground truth depth labels for supervised training, and the unsupervised depth estimation using monocular sequences emerges as a promising alternative.
In this paper, we employ a convolution-free Swin Transformer as an image feature extractor so that the network can capture both local geometric features and global semantic features for depth estimation.
Also, we propose a Densely Cascaded Multi-scale Network (DCMNet) that connects every feature map directly with another from different scales via a top-down cascade pathway.
arXiv Detail & Related papers (2023-01-17T06:01:46Z) - Hybrid Transformer Based Feature Fusion for Self-Supervised Monocular
Depth Estimation [33.018300966769516]
Most State of the Art (SOTA) works in the self-supervised and unsupervised domain to predict disparity maps from a given input image.
Our model fuses per-pixel local information learned using two fully convolutional depth encoders with global contextual information learned by a transformer encoder at different scales.
It does so using a mask-guided multi-stream convolution in the feature space to achieve state-of-the-art performance on most standard benchmarks.
arXiv Detail & Related papers (2022-11-20T20:00:21Z) - HiMODE: A Hybrid Monocular Omnidirectional Depth Estimation Model [3.5290359800552946]
HiMODE is a novel monocular omnidirectional depth estimation model based on a CNN+Transformer architecture.
We show that HiMODE can achieve state-of-the-art performance for 360deg monocular depth estimation.
arXiv Detail & Related papers (2022-04-11T11:11:43Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
In this paper, we advocate that replicating the traditional two stages framework with deep neural networks improves both the interpretability and the accuracy of the results.
Our network operates in two steps: 1) the local computation of the local depth maps with a deep MVS technique, and, 2) the depth maps and images' features fusion to build a single TSDF volume.
In order to improve the matching performance between images acquired from very different viewpoints, we introduce a rotation-invariant 3D convolution kernel called PosedConv.
arXiv Detail & Related papers (2021-08-19T11:33:58Z) - OmniSLAM: Omnidirectional Localization and Dense Mapping for
Wide-baseline Multi-camera Systems [88.41004332322788]
We present an omnidirectional localization and dense mapping system for a wide-baseline multiview stereo setup with ultra-wide field-of-view (FOV) fisheye cameras.
For more practical and accurate reconstruction, we first introduce improved and light-weighted deep neural networks for the omnidirectional depth estimation.
We integrate our omnidirectional depth estimates into the visual odometry (VO) and add a loop closing module for global consistency.
arXiv Detail & Related papers (2020-03-18T05:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.