Matching Normalizing Flows and Probability Paths on Manifolds
- URL: http://arxiv.org/abs/2207.04711v1
- Date: Mon, 11 Jul 2022 08:50:19 GMT
- Title: Matching Normalizing Flows and Probability Paths on Manifolds
- Authors: Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Aditya Grover,
Maximilian Nickel, Ricky T.Q. Chen, Yaron Lipman
- Abstract summary: Continuous Normalizing Flows (CNFs) are generative models that transform a prior distribution to a model distribution by solving an ordinary differential equation (ODE)
We propose to train CNFs by minimizing probability path divergence (PPD), a novel family of divergences between the probability density path generated by the CNF and a target probability density path.
We show that CNFs learned by minimizing PPD achieve state-of-the-art results in likelihoods and sample quality on existing low-dimensional manifold benchmarks.
- Score: 57.95251557443005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous Normalizing Flows (CNFs) are a class of generative models that
transform a prior distribution to a model distribution by solving an ordinary
differential equation (ODE). We propose to train CNFs on manifolds by
minimizing probability path divergence (PPD), a novel family of divergences
between the probability density path generated by the CNF and a target
probability density path. PPD is formulated using a logarithmic mass
conservation formula which is a linear first order partial differential
equation relating the log target probabilities and the CNF's defining vector
field. PPD has several key benefits over existing methods: it sidesteps the
need to solve an ODE per iteration, readily applies to manifold data, scales to
high dimensions, and is compatible with a large family of target paths
interpolating pure noise and data in finite time. Theoretically, PPD is shown
to bound classical probability divergences. Empirically, we show that CNFs
learned by minimizing PPD achieve state-of-the-art results in likelihoods and
sample quality on existing low-dimensional manifold benchmarks, and is the
first example of a generative model to scale to moderately high dimensional
manifolds.
Related papers
- Discrete Flow Matching [74.04153927689313]
We present a novel discrete flow paradigm designed specifically for generating discrete data.
Our approach is capable of generating high-quality discrete data in a non-autoregressive fashion.
arXiv Detail & Related papers (2024-07-22T12:33:27Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Normalizing flow sampling with Langevin dynamics in the latent space [12.91637880428221]
Normalizing flows (NF) use a continuous generator to map a simple latent (e.g. Gaussian) distribution, towards an empirical target distribution associated with a training data set.
Since standard NF implement differentiable maps, they may suffer from pathological behaviors when targeting complex distributions.
This paper proposes a new Markov chain Monte Carlo algorithm to sample from the target distribution in the latent domain before transporting it back to the target domain.
arXiv Detail & Related papers (2023-05-20T09:31:35Z) - Flow Matching for Generative Modeling [44.66897082688762]
Flow Matching is a simulation-free approach for training Continuous Normalizing Flows (CNFs)
We find that employing FM with diffusion paths results in a more robust and stable alternative for training diffusion models.
Training CNFs using Flow Matching on ImageNet leads to state-of-the-art performance in terms of both likelihood and sample quality.
arXiv Detail & Related papers (2022-10-06T08:32:20Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions.
We propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.
Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself.
arXiv Detail & Related papers (2022-08-18T16:07:59Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.