Stacked Autoencoder Based Multi-Omics Data Integration for Cancer
Survival Prediction
- URL: http://arxiv.org/abs/2207.04878v1
- Date: Fri, 8 Jul 2022 13:53:11 GMT
- Title: Stacked Autoencoder Based Multi-Omics Data Integration for Cancer
Survival Prediction
- Authors: Xing Wu, Qiulian Fang
- Abstract summary: We propose a novel method to integrate multi-omics data for cancer survival prediction, called Stacked AutoEncoder-based Survival Prediction Neural Network (SAEsurv-net)
SAEsurv-net addresses the curse of dimensionality with a two-stage dimensionality reduction strategy and handles multi-omics heterogeneity with a stacked computation autoencoder model.
The experiments show that SAEsurv-net outperforms models based on a single type of data as well as other state-of-the-art methods.
- Score: 3.083561980077652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancer survival prediction is important for developing personalized
treatments and inducing disease-causing mechanisms. Multi-omics data
integration is attracting widespread interest in cancer research for providing
information for understanding cancer progression at multiple genetic levels.
Many works, however, are limited because of the high dimensionality and
heterogeneity of multi-omics data. In this paper, we propose a novel method to
integrate multi-omics data for cancer survival prediction, called Stacked
AutoEncoder-based Survival Prediction Neural Network (SAEsurv-net). In the
cancer survival prediction for TCGA cases, SAEsurv-net addresses the curse of
dimensionality with a two-stage dimensionality reduction strategy and handles
multi-omics heterogeneity with a stacked autoencoder model. The two-stage
dimensionality reduction strategy achieves a balance between computation
complexity and information exploiting. The stacked autoencoder model removes
most heterogeneities such as data's type and size in the first group of
autoencoders, and integrates multiple omics data in the second autoencoder. The
experiments show that SAEsurv-net outperforms models based on a single type of
data as well as other state-of-the-art methods.
Related papers
- Embedding-based Multimodal Learning on Pan-Squamous Cell Carcinomas for Improved Survival Outcomes [0.0]
PARADIGM is a framework that learns from multimodal, heterogeneous datasets to improve clinical outcome prediction.
We train GNNs on pan-Squamous Cell Carcinomas and validate our approach on Moffitt Cancer Center lung SCC data.
Our solution aims to understand the patient's circumstances comprehensively, offering insights on heterogeneous data integration and the benefits of converging maximum data views.
arXiv Detail & Related papers (2024-06-11T22:19:14Z) - An Autoencoder and Generative Adversarial Networks Approach for Multi-Omics Data Imbalanced Class Handling and Classification [2.2940141855172036]
In molecular biology, there has been an explosion of data generated from multi-omics sequencing.
Traditional statistical methods face challenging tasks when dealing with such high dimensional data.
This study, focused on tackling these challenges in a neural network that incorporates autoencoder to extract latent space of the features.
arXiv Detail & Related papers (2024-05-16T01:45:55Z) - SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival [8.403756148610269]
Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach.
This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders.
Our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases.
arXiv Detail & Related papers (2024-03-14T11:23:39Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
We propose a multimodal transformer (PathOmics) integrating pathology and genomics insights into colon-related cancer survival prediction.
We emphasize the unsupervised pretraining to capture the intrinsic interaction between tissue microenvironments in gigapixel whole slide images.
We evaluate our approach on both TCGA colon and rectum cancer cohorts, showing that the proposed approach is competitive and outperforms state-of-the-art studies.
arXiv Detail & Related papers (2023-07-22T00:59:26Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
We propose a novel mixed graphical model approach to analyze multi-omic data of different types.
We find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results.
arXiv Detail & Related papers (2020-05-08T16:34:58Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.