Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks
- URL: http://arxiv.org/abs/2207.04889v1
- Date: Tue, 31 May 2022 17:02:26 GMT
- Title: Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks
- Authors: Sijia Lu and Feng Xu
- Abstract summary: Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability.
This paper establishes a precise mathematical mapping between the biological parameters of the Linear Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-AN/Deep Neural Networks (DNNs)
- Score: 7.840247953745616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are brain-inspired machine learning algorithms
with merits such as biological plausibility and unsupervised learning
capability. Previous works have shown that converting Artificial Neural
Networks (ANNs) into SNNs is a practical and efficient approach for
implementing an SNN. However, the basic principle and theoretical groundwork
are lacking for training a non-accuracy-loss SNN. This paper establishes a
precise mathematical mapping between the biological parameters of the Linear
Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-AN/Deep
Neural Networks (DNNs). Such mapping relationship is analytically proven under
certain conditions and demonstrated by simulation and real data experiments. It
can serve as the theoretical basis for the potential combination of the
respective merits of the two categories of neural networks.
Related papers
- Direct Training High-Performance Deep Spiking Neural Networks: A Review of Theories and Methods [33.377770671553336]
Spiking neural networks (SNNs) offer a promising energy-efficient alternative to artificial neural networks (ANNs)
In this paper, we provide a new perspective to summarize the theories and methods for training deep SNNs with high performance.
arXiv Detail & Related papers (2024-05-06T09:58:54Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
Spiking Neural Networks (SNNs) have become an essential paradigm in neuroscience and artificial intelligence.
Recent advances in literature have studied the network representations of deep neural networks.
arXiv Detail & Related papers (2024-03-19T05:37:26Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Exploiting Noise as a Resource for Computation and Learning in Spiking
Neural Networks [32.0086664373154]
This study introduces the noisy spiking neural network (NSNN) and the noise-driven learning rule (NDL)
NSNN provides a theoretical framework that yields scalable, flexible, and reliable computation.
arXiv Detail & Related papers (2023-05-25T13:21:26Z) - PC-SNN: Supervised Learning with Local Hebbian Synaptic Plasticity based
on Predictive Coding in Spiking Neural Networks [1.6172800007896282]
We propose a novel learning algorithm inspired by predictive coding theory.
We show that it can perform supervised learning fully autonomously and successfully as the backprop.
This method achieves a favorable performance compared to the state-of-the-art multi-layer SNNs.
arXiv Detail & Related papers (2022-11-24T09:56:02Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - NINNs: Nudging Induced Neural Networks [0.0]
New algorithms called nudging induced neural networks (NINNs) to control and improve the accuracy of deep neural networks (DNNs)
NINNs work by adding a feedback control term to the forward propagation of the network.
Rigorous convergence analysis is established for NINNs.
arXiv Detail & Related papers (2022-03-15T14:29:26Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
We study how neural networks trained by gradient descent extrapolate what they learn outside the support of the training distribution.
Graph Neural Networks (GNNs) have shown some success in more complex tasks.
arXiv Detail & Related papers (2020-09-24T17:48:59Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.