Efficient factored gradient descent algorithm for quantum state tomography
- URL: http://arxiv.org/abs/2207.05341v4
- Date: Mon, 8 Jul 2024 15:08:51 GMT
- Title: Efficient factored gradient descent algorithm for quantum state tomography
- Authors: Yong Wang, Lijun Liu, Shuming Cheng, Li Li, Jie Chen,
- Abstract summary: We present an efficient quantum tomography protocol that combines the state-factored with eigenvalue mapping to address the rank-deficient issue.
We also find that our method can accomplish the full-state tomography of random 11-qubit mixed states within one minute.
- Score: 10.100843479138222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing the state of quantum many-body systems is of fundamental importance in quantum information tasks, but extremely challenging due to the curse of dimensionality. In this work, we present an efficient quantum tomography protocol that combines the state-factored with eigenvalue mapping to address the rank-deficient issue and incorporates a momentum-accelerated gradient descent algorithm to speed up the optimization process. We implement extensive numerical experiments to demonstrate that our factored gradient descent algorithm efficiently mitigates the rank-deficient problem and admits orders of magnitude better tomography accuracy and faster convergence. We also find that our method can accomplish the full-state tomography of random 11-qubit mixed states within one minute.
Related papers
- Fast Quantum Process Tomography via Riemannian Gradient Descent [3.1406146587437904]
Constrained optimization plays a crucial role in the fields of quantum physics and quantum information science.
One specific issue is that of quantum process tomography, in which the goal is to retrieve the underlying quantum process based on a given set of measurement data.
arXiv Detail & Related papers (2024-04-29T16:28:14Z) - Quantum Shadow Gradient Descent for Variational Quantum Algorithms [14.286227676294034]
Gradient-based gradient estimation has been proposed for training variational quantum circuits in quantum neural networks (QNNs)
The task of gradient estimation has proven to be challenging due to distinctive quantum features such as state collapse and measurement incompatibility.
We develop a novel procedure called quantum shadow descent that uses a single sample per iteration to estimate all components of the gradient.
arXiv Detail & Related papers (2023-10-10T18:45:43Z) - Multi-qubit State Tomography with Few Pauli Measurements [8.611891055029076]
A characterization tool, Quantum state tomography, reconstructs the density matrix of an unknown quantum state.
This is less practical owing to the huge burden of measurements and data processing for large numbers of qubits.
We build an efficient framework that requires fewer measurements but yields an expected accuracy.
arXiv Detail & Related papers (2023-05-31T14:10:26Z) - Neural Networks with Quantization Constraints [111.42313650830248]
We present a constrained learning approach to quantization training.
We show that the resulting problem is strongly dual and does away with gradient estimations.
We demonstrate that the proposed approach exhibits competitive performance in image classification tasks.
arXiv Detail & Related papers (2022-10-27T17:12:48Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Efficient Quantum State Tracking in Noisy Environments [10.762101459838052]
We present an experimental implementation of matrix-exponentiated gradient tomography on a qutrit system encoded in the transverse spatial mode of photons.
We investigate the performance of our method on stationary and evolving states, as well as significant environmental noise, and find fidelities of around 95% in all cases.
arXiv Detail & Related papers (2022-05-12T22:32:14Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fast and robust quantum state tomography from few basis measurements [65.36803384844723]
We present an online tomography algorithm designed to optimize all the aforementioned resources at the cost of a worse dependence on accuracy.
The protocol is the first to give provably optimal performance in terms of rank and dimension for state copies, measurement settings and memory.
Further improvements are possible by executing the algorithm on a quantum computer, giving a quantum speedup for quantum state tomography.
arXiv Detail & Related papers (2020-09-17T11:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.