Temporal Disentanglement of Representations for Improved Generalisation
in Reinforcement Learning
- URL: http://arxiv.org/abs/2207.05480v1
- Date: Tue, 12 Jul 2022 11:46:49 GMT
- Title: Temporal Disentanglement of Representations for Improved Generalisation
in Reinforcement Learning
- Authors: Mhairi Dunion, Trevor McInroe, Kevin Luck, Josiah Hanna, Stefano V.
Albrecht
- Abstract summary: In real-world robotics applications, Reinforcement Learning (RL) agents are often unable to generalise to environment variations that were not observed during training.
We introduce TEmporal Disentanglement (TED), a self-supervised auxiliary task that leads to disentangled representations using the sequential nature of RL observations.
We find empirically that RL algorithms with TED as an auxiliary task adapt more quickly to changes in environment variables with continued training compared to state-of-the-art representation learning methods.
- Score: 7.972204774778987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world robotics applications, Reinforcement Learning (RL) agents are
often unable to generalise to environment variations that were not observed
during training. This issue is intensified for image-based RL where a change in
one variable, such as the background colour, can change many pixels in the
image, and in turn can change all values in the agent's internal representation
of the image. To learn more robust representations, we introduce TEmporal
Disentanglement (TED), a self-supervised auxiliary task that leads to
disentangled representations using the sequential nature of RL observations. We
find empirically that RL algorithms with TED as an auxiliary task adapt more
quickly to changes in environment variables with continued training compared to
state-of-the-art representation learning methods. Due to the disentangled
structure of the representation, we also find that policies trained with TED
generalise better to unseen values of variables irrelevant to the task (e.g.
background colour) as well as unseen values of variables that affect the
optimal policy (e.g. goal positions).
Related papers
- Efficient Policy Adaptation with Contrastive Prompt Ensemble for Embodied Agents [6.402396836189286]
We present a novel contrastive prompt ensemble (ConPE) framework for embodied reinforcement learning.
We devise a guided-attention-based ensemble approach with multiple visual prompts on the vision-language model to construct robust state representations.
In experiments, we show that ConPE outperforms other state-of-the-art algorithms for several embodied agent tasks.
arXiv Detail & Related papers (2024-12-16T06:53:00Z) - CricaVPR: Cross-image Correlation-aware Representation Learning for Visual Place Recognition [73.51329037954866]
We propose a robust global representation method with cross-image correlation awareness for visual place recognition.
Our method uses the attention mechanism to correlate multiple images within a batch.
Our method outperforms state-of-the-art methods by a large margin with significantly less training time.
arXiv Detail & Related papers (2024-02-29T15:05:11Z) - Vision-Language Models Provide Promptable Representations for Reinforcement Learning [67.40524195671479]
We propose a novel approach that uses the vast amounts of general and indexable world knowledge encoded in vision-language models (VLMs) pre-trained on Internet-scale data for embodied reinforcement learning (RL)
We show that our approach can use chain-of-thought prompting to produce representations of common-sense semantic reasoning, improving policy performance in novel scenes by 1.5 times.
arXiv Detail & Related papers (2024-02-05T00:48:56Z) - Invariance is Key to Generalization: Examining the Role of
Representation in Sim-to-Real Transfer for Visual Navigation [35.01394611106655]
Key to generalization is representations that are rich enough to capture all task-relevant information.
We experimentally study such a representation for visual navigation.
We show that our representation reduces the A-distance between the training and test domains.
arXiv Detail & Related papers (2023-10-23T15:15:19Z) - RePo: Resilient Model-Based Reinforcement Learning by Regularizing
Posterior Predictability [25.943330238941602]
We propose a visual model-based RL method that learns a latent representation resilient to spurious variations.
Our training objective encourages the representation to be maximally predictive of dynamics and reward.
Our effort is a step towards making model-based RL a practical and useful tool for dynamic, diverse domains.
arXiv Detail & Related papers (2023-08-31T18:43:04Z) - Weakly Supervised Disentangled Representation for Goal-conditioned
Reinforcement Learning [15.698612710580447]
We propose a skill learning framework DR-GRL that aims to improve the sample efficiency and policy generalization.
In a weakly supervised manner, we propose a Spatial Transform AutoEncoder (STAE) to learn an interpretable and controllable representation.
We empirically demonstrate that DR-GRL significantly outperforms the previous methods in sample efficiency and policy generalization.
arXiv Detail & Related papers (2022-02-28T09:05:14Z) - Curious Representation Learning for Embodied Intelligence [81.21764276106924]
Self-supervised representation learning has achieved remarkable success in recent years.
Yet to build truly intelligent agents, we must construct representation learning algorithms that can learn from environments.
We propose a framework, curious representation learning, which jointly learns a reinforcement learning policy and a visual representation model.
arXiv Detail & Related papers (2021-05-03T17:59:20Z) - Robust Deep Reinforcement Learning via Multi-View Information Bottleneck [7.188571996124112]
We introduce an auxiliary objective based on the multi-view information bottleneck (MIB) principle.
This encourages learning representations that are both predictive of the future and less sensitive to task-irrelevant distractions.
We demonstrate that our approach can achieve SOTA performance on challenging visual control tasks, even when the background is replaced with natural videos.
arXiv Detail & Related papers (2021-02-26T02:24:36Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
We show that an off-policy RL algorithm can reason about and tackle lifelong non-stationarity.
Our method leverages latent variable models to learn a representation of the environment from current and past experiences.
We also introduce several simulation environments that exhibit lifelong non-stationarity, and empirically find that our approach substantially outperforms approaches that do not reason about environment shift.
arXiv Detail & Related papers (2020-06-18T17:34:50Z) - Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics [60.92229707497999]
We introduce a novel principle for self-supervised feature learning based on the discrimination of specific transformations of an image.
We demonstrate experimentally that learning to discriminate transformations such as LCI, image warping and rotations, yields features with state of the art generalization capabilities.
arXiv Detail & Related papers (2020-04-05T22:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.