RelaxLoss: Defending Membership Inference Attacks without Losing Utility
- URL: http://arxiv.org/abs/2207.05801v1
- Date: Tue, 12 Jul 2022 19:34:47 GMT
- Title: RelaxLoss: Defending Membership Inference Attacks without Losing Utility
- Authors: Dingfan Chen, Ning Yu, Mario Fritz
- Abstract summary: We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
- Score: 68.48117818874155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a long-term threat to the privacy of training data, membership inference
attacks (MIAs) emerge ubiquitously in machine learning models. Existing works
evidence strong connection between the distinguishability of the training and
testing loss distributions and the model's vulnerability to MIAs. Motivated by
existing results, we propose a novel training framework based on a relaxed loss
with a more achievable learning target, which leads to narrowed generalization
gap and reduced privacy leakage. RelaxLoss is applicable to any classification
model with added benefits of easy implementation and negligible overhead.
Through extensive evaluations on five datasets with diverse modalities (images,
medical data, transaction records), our approach consistently outperforms
state-of-the-art defense mechanisms in terms of resilience against MIAs as well
as model utility. Our defense is the first that can withstand a wide range of
attacks while preserving (or even improving) the target model's utility. Source
code is available at https://github.com/DingfanChen/RelaxLoss
Related papers
- Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
We introduce Celtibero, a novel defense mechanism that integrates layered aggregation to enhance robustness against adversarial manipulation.
We demonstrate that Celtibero consistently achieves high main task accuracy (MTA) while maintaining minimal attack success rates (ASR) across a range of untargeted and targeted poisoning attacks.
arXiv Detail & Related papers (2024-08-26T12:54:00Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Practical Membership Inference Attacks Against Large-Scale Multi-Modal
Models: A Pilot Study [17.421886085918608]
Membership inference attacks (MIAs) aim to infer whether a data point has been used to train a machine learning model.
These attacks can be employed to identify potential privacy vulnerabilities and detect unauthorized use of personal data.
This paper takes a first step towards developing practical MIAs against large-scale multi-modal models.
arXiv Detail & Related papers (2023-09-29T19:38:40Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
Existing model stealing defenses add deceptive perturbations to the victim's posterior probabilities to mislead the attackers.
This paper proposes Isolation and Induction (InI), a novel and effective training framework for model stealing defenses.
In contrast to adding perturbations over model predictions that harm the benign accuracy, we train models to produce uninformative outputs against stealing queries.
arXiv Detail & Related papers (2023-08-02T05:54:01Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - On the Evaluation of User Privacy in Deep Neural Networks using Timing
Side Channel [14.350301915592027]
We identify and report a novel data-dependent timing side-channel leakage (termed Class Leakage) in Deep Learning (DL) implementations.
We demonstrate a practical inference-time attack where an adversary with user privilege and hard-label blackbox access to an ML can exploit Class Leakage.
We develop an easy-to-implement countermeasure by making a constant-time branching operation that alleviates the Class Leakage.
arXiv Detail & Related papers (2022-08-01T19:38:16Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.