Supervised Attribute Information Removal and Reconstruction for Image
Manipulation
- URL: http://arxiv.org/abs/2207.06555v1
- Date: Wed, 13 Jul 2022 23:30:44 GMT
- Title: Supervised Attribute Information Removal and Reconstruction for Image
Manipulation
- Authors: Nannan Li and Bryan A. Plummer
- Abstract summary: We propose an Attribute Information Removal and Reconstruction (AIRR) network that prevents such information hiding.
We evaluate our approach on four diverse datasets with a variety of attributes including DeepFashion Synthesis, DeepFashion Fine-grained Attribute, CelebA and CelebA-HQ.
- Score: 15.559224431459551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of attribute manipulation is to control specified attribute(s) in
given images. Prior work approaches this problem by learning disentangled
representations for each attribute that enables it to manipulate the encoded
source attributes to the target attributes. However, encoded attributes are
often correlated with relevant image content. Thus, the source attribute
information can often be hidden in the disentangled features, leading to
unwanted image editing effects. In this paper, we propose an Attribute
Information Removal and Reconstruction (AIRR) network that prevents such
information hiding by learning how to remove the attribute information
entirely, creating attribute excluded features, and then learns to directly
inject the desired attributes in a reconstructed image. We evaluate our
approach on four diverse datasets with a variety of attributes including
DeepFashion Synthesis, DeepFashion Fine-grained Attribute, CelebA and
CelebA-HQ, where our model improves attribute manipulation accuracy and top-k
retrieval rate by 10% on average over prior work. A user study also reports
that AIRR manipulated images are preferred over prior work in up to 76% of
cases.
Related papers
- Predicting Scores of Various Aesthetic Attribute Sets by Learning from
Overall Score Labels [54.63611854474985]
In this paper, we propose to replace image attribute labels with feature extractors.
We use networks from different tasks to provide attribute features to our F2S model.
Our method makes it feasible to learn meaningful attribute scores for various aesthetic attribute sets in different types of images with only overall aesthetic scores.
arXiv Detail & Related papers (2023-12-06T01:41:49Z) - Attribute-Aware Deep Hashing with Self-Consistency for Large-Scale
Fine-Grained Image Retrieval [65.43522019468976]
We propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes.
We develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors.
Our models are equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities.
arXiv Detail & Related papers (2023-11-21T08:20:38Z) - UMAAF: Unveiling Aesthetics via Multifarious Attributes of Images [16.647573404422175]
We propose the Unified Multi-attribute Aesthetic Assessment Framework (UMAAF) to model both absolute and relative attributes of images.
UMAAF achieves state-of-the-art performance on TAD66K and AVA datasets.
arXiv Detail & Related papers (2023-11-19T11:57:01Z) - Attribute-Guided Multi-Level Attention Network for Fine-Grained Fashion Retrieval [27.751399400911932]
We introduce an attribute-guided multi-level attention network (AG-MAN) for fine-grained fashion retrieval.
Specifically, we first enhance the pre-trained feature extractor to capture multi-level image embedding.
Then, we propose a classification scheme where images with the same attribute, albeit with different values, are categorized into the same class.
arXiv Detail & Related papers (2022-12-27T05:28:38Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
We argue that an image representation with integrated attribute localization ability would be beneficial for any-shot, i.e. zero-shot and few-shot, image classification tasks.
We propose a novel representation learning framework that jointly learns global and local features using only class-level attributes.
arXiv Detail & Related papers (2022-04-04T02:25:40Z) - FashionSearchNet-v2: Learning Attribute Representations with
Localization for Image Retrieval with Attribute Manipulation [22.691709684780292]
The proposed FashionSearchNet-v2 architecture is able to learn attribute specific representations by leveraging on its weakly-supervised localization module.
The network is jointly trained with the combination of attribute classification and triplet ranking loss to estimate local representations.
Experiments performed on several datasets that are rich in terms of the number of attributes show that FashionSearchNet-v2 outperforms the other state-of-the-art attribute manipulation techniques.
arXiv Detail & Related papers (2021-11-28T13:50:20Z) - AdaTag: Multi-Attribute Value Extraction from Product Profiles with
Adaptive Decoding [55.89773725577615]
We present AdaTag, which uses adaptive decoding to handle attribute extraction.
Our experiments on a real-world e-Commerce dataset show marked improvements over previous methods.
arXiv Detail & Related papers (2021-06-04T07:54:11Z) - SMILE: Semantically-guided Multi-attribute Image and Layout Editing [154.69452301122175]
Attribute image manipulation has been a very active topic since the introduction of Generative Adversarial Networks (GANs)
We present a multimodal representation that handles all attributes, be it guided by random noise or images, while only using the underlying domain information of the target domain.
Our method is capable of adding, removing or changing either fine-grained or coarse attributes by using an image as a reference or by exploring the style distribution space.
arXiv Detail & Related papers (2020-10-05T20:15:21Z) - Attribute Prototype Network for Zero-Shot Learning [113.50220968583353]
We propose a novel zero-shot representation learning framework that jointly learns discriminative global and local features.
Our model points to the visual evidence of the attributes in an image, confirming the improved attribute localization ability of our image representation.
arXiv Detail & Related papers (2020-08-19T06:46:35Z) - Prominent Attribute Modification using Attribute Dependent Generative
Adversarial Network [4.654937118111992]
The proposed approach is based on two generators and two discriminators that utilize the binary as well as the real representation of the attributes.
Experiments on the CelebA dataset show that our method effectively performs the multiple attribute editing with preserving other facial details intactly.
arXiv Detail & Related papers (2020-04-24T13:38:05Z) - MulGAN: Facial Attribute Editing by Exemplar [2.272764591035106]
Methods encode attribute-related information in images into the predefined region of the latent feature space by employing a pair of images with opposite attributes as input to train model.
They suffer from three limitations: (1) the model must be trained using a pair of images with opposite attributes as input; (2) weak capability of editing multiple attributes by exemplars; and (3) poor quality of generating image.
arXiv Detail & Related papers (2019-12-28T04:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.