Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks
- URL: http://arxiv.org/abs/2207.06819v1
- Date: Thu, 14 Jul 2022 10:59:39 GMT
- Title: Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks
- Authors: Evan Caville, Wai Weng Lo, Siamak Layeghy, Marius Portmann
- Abstract summary: This paper investigates Graph Neural Networks (GNNs) application for self-supervised network intrusion and anomaly detection.
GNNs are a deep learning approach for graph-based data that incorporate graph structures into learning.
We present Anomal-E, a GNN approach to intrusion and anomaly detection that leverages edge features and graph topological structure in a self-supervised process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates Graph Neural Networks (GNNs) application for
self-supervised network intrusion and anomaly detection. GNNs are a deep
learning approach for graph-based data that incorporate graph structures into
learning to generalise graph representations and output embeddings. As network
flows are naturally graph-based, GNNs are a suitable fit for analysing and
learning network behaviour. The majority of current implementations of
GNN-based Network Intrusion Detection Systems (NIDSs) rely heavily on labelled
network traffic which can not only restrict the amount and structure of input
traffic, but also the NIDSs potential to adapt to unseen attacks. To overcome
these restrictions, we present Anomal-E, a GNN approach to intrusion and
anomaly detection that leverages edge features and graph topological structure
in a self-supervised process. This approach is, to the best our knowledge, the
first successful and practical approach to network intrusion detection that
utilises network flows in a self-supervised, edge leveraging GNN. Experimental
results on two modern benchmark NIDS datasets not only clearly display the
improvement of using Anomal-E embeddings rather than raw features, but also the
potential Anomal-E has for detection on wild network traffic.
Related papers
- Reducing Oversmoothing through Informed Weight Initialization in Graph Neural Networks [16.745718346575202]
We propose a new scheme (G-Init) that reduces oversmoothing, leading to very good results in node and graph classification tasks.
Our results indicate that the new method (G-Init) reduces oversmoothing in deep GNNs, facilitating their effective use.
arXiv Detail & Related papers (2024-10-31T11:21:20Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
This paper studies the application of GNNs to identify the specific types of network flows in an unsupervised manner.
To the best of our knowledge, it is the first GNN-based self-supervised method for the multiclass classification of network flows in NIDS.
arXiv Detail & Related papers (2024-03-03T12:34:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Edge Graph Neural Networks for Massive MIMO Detection [15.970981766599035]
Massive Multiple-Input Multiple-Out (MIMO) detection is an important problem in modern wireless communication systems.
While traditional Belief Propagation (BP) detectors perform poorly on loopy graphs, the recent Graph Neural Networks (GNNs)-based method can overcome the drawbacks of BP and achieve superior performance.
arXiv Detail & Related papers (2022-05-22T08:01:47Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
Graph Neural Networks (GNNs) are deep learning models that take graph data as inputs, and they are applied to various tasks such as traffic prediction and molecular property prediction.
We extend explainability methods for CNNs, such as Local Interpretable Model-Agnostic Explanations (LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation Mapping (Grad-CAM) to GNNs.
The experimental results indicate that the LIME-based approach is the most efficient explainability method for multiple tasks in the real-world situation, outperforming even the state-of-the
arXiv Detail & Related papers (2021-11-01T06:27:29Z) - E-GraphSAGE: A Graph Neural Network based Intrusion Detection System [3.3598755777055374]
This paper presents a new network intrusion detection system (NIDS) based on Graph Neural Networks (GNNs)
GNNs are a relatively new sub-field of deep neural networks, which have the unique ability to leverage the inherent structure of graph-based data.
An experimental evaluation based on six recent NIDS benchmark datasets shows the excellent performance of our E-GraphSAGE based NIDS.
arXiv Detail & Related papers (2021-03-30T13:21:31Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.