Single Model Uncertainty Estimation via Stochastic Data Centering
- URL: http://arxiv.org/abs/2207.07235v1
- Date: Thu, 14 Jul 2022 23:54:54 GMT
- Title: Single Model Uncertainty Estimation via Stochastic Data Centering
- Authors: Jayaraman J. Thiagarajan, Rushil Anirudh, Vivek Narayanaswamy and
Peer-Timo Bremer
- Abstract summary: We are interested in estimating the uncertainties of deep neural networks.
We present a striking new finding that an ensemble of neural networks with the same weight initialization, trained on datasets that are shifted by a constant bias gives rise to slightly inconsistent trained models.
We show that $Delta-$UQ's uncertainty estimates are superior to many of the current methods on a variety of benchmarks.
- Score: 39.71621297447397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We are interested in estimating the uncertainties of deep neural networks,
which play an important role in many scientific and engineering problems. In
this paper, we present a striking new finding that an ensemble of neural
networks with the same weight initialization, trained on datasets that are
shifted by a constant bias gives rise to slightly inconsistent trained models,
where the differences in predictions are a strong indicator of epistemic
uncertainties. Using the neural tangent kernel (NTK), we demonstrate that this
phenomena occurs in part because the NTK is not shift-invariant. Since this is
achieved via a trivial input transformation, we show that it can therefore be
approximated using just a single neural network -- using a technique that we
call $\Delta-$UQ -- that estimates uncertainty around prediction by
marginalizing out the effect of the biases. We show that $\Delta-$UQ's
uncertainty estimates are superior to many of the current methods on a variety
of benchmarks -- outlier rejection, calibration under distribution shift, and
sequential design optimization of black box functions.
Related papers
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Bayesian Neural Network Versus Ex-Post Calibration For Prediction
Uncertainty [0.2343856409260935]
Probabilistic predictions from neural networks account for predictive uncertainty during classification.
In practice most datasets are trained on non-probabilistic neural networks which by default do not capture this inherent uncertainty.
A plausible alternative to the calibration approach is to use Bayesian neural networks, which directly models a predictive distribution.
arXiv Detail & Related papers (2022-09-29T07:22:19Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - A heteroencoder architecture for prediction of failure locations in
porous metals using variational inference [1.2722697496405462]
We employ an encoder-decoder convolutional neural network to predict the failure locations of porous metal tension specimens.
The objective of predicting failure locations presents an extreme case of class imbalance since most of the material in the specimens do not fail.
We demonstrate that the resulting predicted variances are effective in ranking the locations that are most likely to fail in any given specimen.
arXiv Detail & Related papers (2022-01-31T20:26:53Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.